

Bioessais in vitro

Évaluation de la contamination par des composés perturbateurs endocriniens, dioxin-like et génotoxiques

Selim AIT-AISSA

INERIS: S. Aït-Aïssa, N. Creusot, E. Maillot-Maréchal

Université de Paris Sud : Y. Lévi, L. Oziol

Université de Bordeaux : J. Cachot, C. Clérandeau, A. Pichon

Irstea: F. Serveto, M.J. Capdeville, C. Miège

Contexte ECHIBIOTEB

Eaux usées et boues = mélanges complexes

Des milliers de molécules Lien entre contamination et effets?

Quelles approches pour les évaluer ?

Approche analytique

(analyses ciblées / non ciblées)

☑ quantitatives, sélectives, sensibles (traces) vision partielle / structurale de la contamination

Approche écotoxicologique (bioessais standards)

composés actifs biodisponibles ☑ pertinence (éco)toxicologique

☑ identité des molécules ?

Approche Bio-analytique

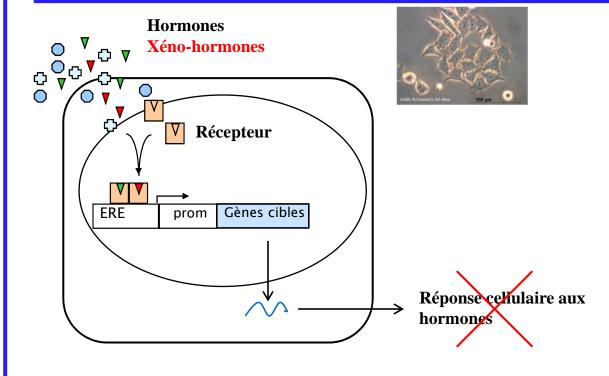
Bioessais in vitro - Détection basée sur le mécanisme d'action des substances

Perturbateurs endocriniens

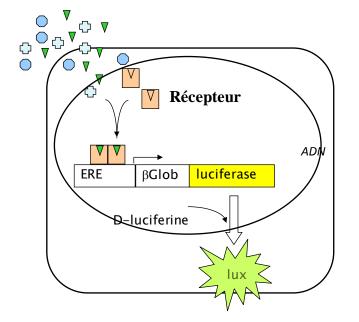
Dioxin-like

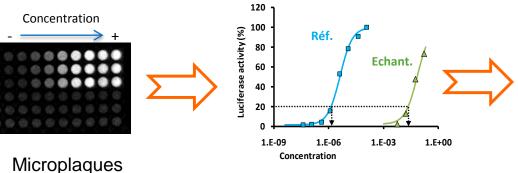
Génotoxiques

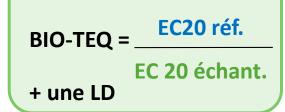
Perturbateurs endocriniens: mécanisme d'action



Bio-essais *in vitro* basés sur le mécanisme d'action







Tests cellulaires exprimant un gène rapporteur (mesure simple et spécifique) sous contrôle de récepteurs des hormones (ER, AR, GR, TR) ou de la dioxine (AhR)

- Mise en évidence de la présence de composés actifs au sein des échantillons
- Quantification relative en équivalentshormones ou équivalents-dioxine dans l'échantillon (TEQ)

Outils fonctionnels

criblage quantitatifs sensibilité (e.g. E2-Eq 0,1 ng/L)

Applications à différentes matrices environnementales

Eaux de surface, effluents (Harries et al 1998, Hislcherova 2000) Sédiments (Kinani et al 2010) Biote (Legler et al 2002)

Validation dans un contexte de surveillance des milieux aquatiques

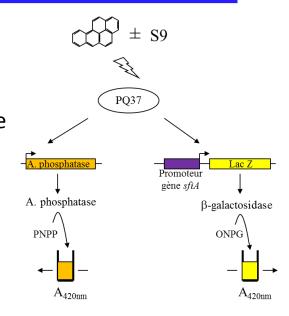
DCE : alternatives à l'analyse de E2 et EE2 (liste de vigilance) dans les eaux usées et eaux de surface

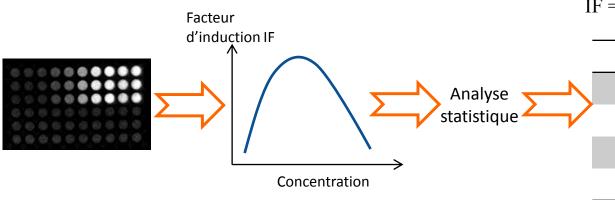
France: AQUAREF

Europe: NORMAN, SPI-Effect-based tools for estrogens (R Käse, eawag) ISO: normes en cours d'élaboration (potentiel estrogénique des eaux)

Bioessais in vitro dans ECHIBIOTEB

Activité	Récepteur	Bioessai	Résultat
Hormono-mimétique	<u>es</u>		
Estrogénique	ER	MELN	estradiol-Eq
Anti-estrogénique	anti-ER		-
Androgénique	AR	MDA-kb2	dihydrotestostérone -Eq
anti-Androgénique	anti-AR	MDA-kb2	flutamide-Eq
Glucocorticoïde	GR	MDA-kb2	dexaméthasone-Eq
Thyroïdien	TR	PC-DR-LUC	T3-Eq
anti-thyroïdien	anti-TR	PC-DR-LUC	-
<u>Dioxin-like</u>			
HAP-like	AhR 4h	PLHC-1	BaP-Eq
dioxine-like	AhR 24h	PLHC-1	TCDD-Eq





Test basé sur l'expression d'un **gène rapporteur lacZ** (mesure simple et spécifique) **sous le contrôle du promoteur du gène** *sfiA* (gène de réparation de l'ADN). Plus le composé est génotoxique, plus le gène *lacZ* est induit et plus l'activité de l'enzyme β galactosidase est élevée.

- Mesure du potentiel **génotoxique** des échantillons
- Test semi-quantitatif

IF	Génotoxicité
≤1	-
1 < ≤1,5	+/-
1,5 < ≤ 2	+
> 2	++

[β-gal. /A. phosph.] _{essai}

[β-gal. /A. phosph.] témoir

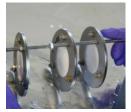
Bioessais in vitro dans ECHIBIOTEB

Pécantour/

Activité	mécanisme	Bioessai	Résultat		
Hormono-mimétiqu	<u>es</u>				
Estrogénique	ER	MELN	estradiol-Eq		
Anti-estrogénique	Anti-ER		-		
Androgénique	AR	MDA-kb2	dihydrotestostérone -Ec		
anti-Androgénique	anti-AR	MDA-kb2	flutamide-Eq		
Glucocorticoïde	GR	MDA-kb2	dexaméthasone-Eq		
Thyroïdien	TR	PC-DR-LUC	T3-Eq		
anti-thyroïdien	anti-TR	PC-DR-LUC	-		
<u>Dioxin-like</u>					
HAP-like	AhR 4h	PLHC-1	BaP-Eq		
dioxine-like	AhR 24h	PLHC-1	TCDD-Eq		
<u>Génotoxicité</u>					
Génotoxicité (± S9)	SOS (±S9)	SOS chromotest	Induction gène sfiA		

Objectifs de l'étude





Eaux

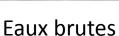
- 1. Profils de contamination sur la base des bioessais in vitro?
- 2. Influence des traitements complémentaires ?
- 3. Lien avec la chimie ciblée ?

Evaluation des eaux

6 sites de STEU

21 eaux d'entrée

Protocole de bioanalyse des eaux



Luciferase activity (%)

1.E-09

1.E-06

Concentration

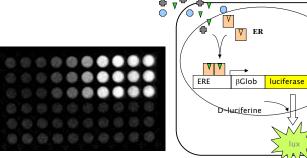
Echant,

1.E-03

1.E+00

Extraction sur phase solide

(SPE)

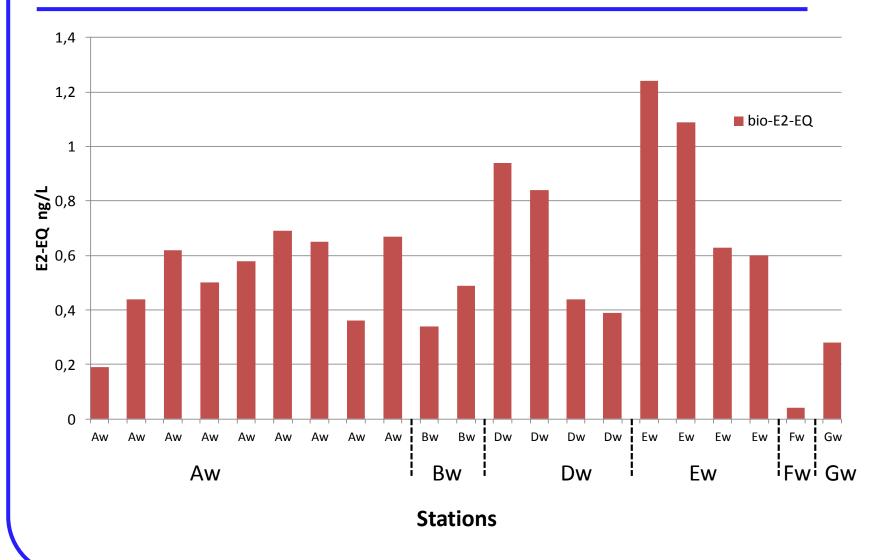

Extrait organique (DMSO)

Bioessais in vitro

Activités in vitro dans les eaux avant traitement complémentaire

6 STEU,	Activités	Présence	Fréquence	Concentrations
21 eaux analysées	Γεταρσόριουρ		100 % (21/21)	E2-Eq : 0.1-1 ng/L
	Glucocorticoïde	+/-	15% (3/21)	Dexa-Eq : 0.5 – 1 μg/L
	Androgénique	+/-	9% (2/21)	DHT-Eq : 4 -14 ng/L
	Anti-androgénique	+/-	4 % (1/21)	Fluta-Eq : 55 μg/L
	(Anti)Thyroïdienne	-	0%	non détecté
	HAP-like	+	57 % (12/21)	BaP-Eq : 0.02 – 1 μg /L
	Dioxin-like	-	0 %	non détecté
	Genotoxicité (SOS)	+	60% (13/21)	non applicable

Activité estrogénique des eaux avant traitement complémentaire



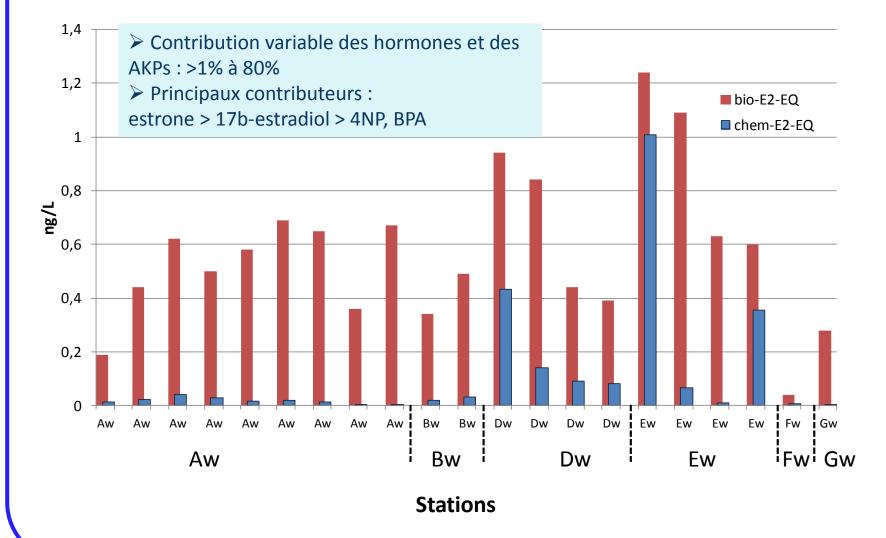
Contribution des hormones, alkylphénols et bisphénol A analysés dans les eaux

Substances	E2-EF
17β-estradiol	1
Ethinylestradiol	0,93
Estrone	0,02
17α -Estradiol	0,02
Estriol	0,17
4-NP mélange isomères	5,E-05
4-Nonylphénoxyacetic acid	4,10E-07
4-tert-octylphénol	1,10E-04
4 tert-butylphénol	1,20E-06
Bisphenol A	4,50E-05

Analyses chimiques

Chem-E2-EQ = Σ (Ci × E2-EFi)

Contribution des hormones, alkylphénols et bisphénol A analysés dans les eaux

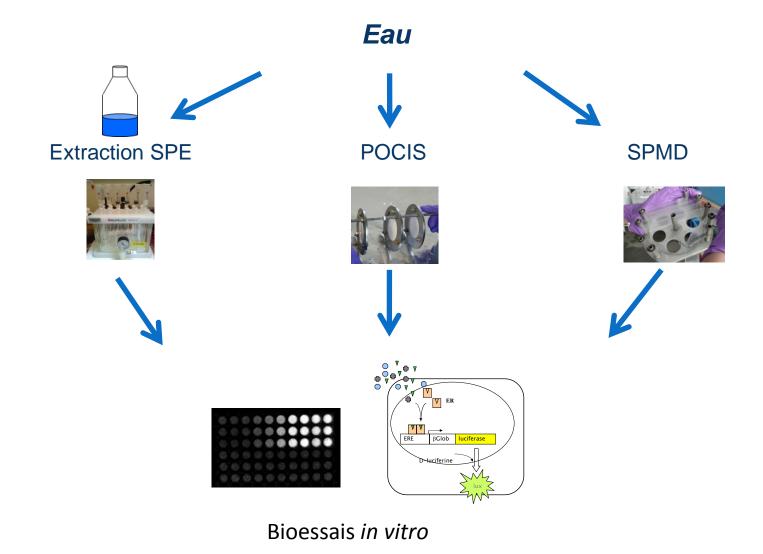


		Exemple : STEU Dw				
Substances	E2-EF	Conc. (ng/L)	Chem-E2-Eq (ng/L)			
17β-estradiol	1	nd	-			
Ethinylestradiol	0,93	nd	-			
Estrone	0,02	4,9	0,10			
17 α -Estradiol	0,02	nd	-			
Estriol	0,17	1,9	0,32			
4-NP mélange isomères	5,E-05	112	0,006			
4-Nonylphénoxyacetic acid	4,10E-07	16	0,002			
4-tert-octylphénol	1,10E-04	30	0,00004			
4 tert-butylphénol	1,20E-06	150	0,007			
Bisphenol A	4,50E-05	845	0,0003			
			Σ = 0,43 ng/L			
		Bio-E2-Eq =	0,94 ng/L			
		% Chimie / Bioessai	46 %			

Contribution des hormones, alkylphénols et bisphénol A analysés dans les eaux

- Activité anti-androgénique (1 échantillon): contribution faible des AKP (< 1 %)
- Pas de données d'analyses ciblées de polluants connus pour être actifs dans les bioessais : GR, AR, TR

Eaux vs. échantillonneurs passifs



Eaux vs. échantillonneurs passifs

irstea

3 STEU: Aw, Dw, Ew

Activités	Eau	POCIS	SPMD
Estrogénique	+	++	+/-
Glucocorticoïde	+/-	+	-
Androgénique	+/-	+	-
HAP-like	+	+/-	++
Anti-Androgénique	-	-	+
Thyroïdienne	-	-	+ (1 éch)
Anti-Thyroïdienne	-	-	-
Genotoxicité (SOS)	+	Non mesuré	Non mesuré

- ➤ Cohérence avec polarité des polluants, e.g. hormones / POCIS, HAP / SPMD
- ➤ Apport des échantillonneurs passifs : concentrer / révéler activités non détectées en SPE

.... envolure

Effet des procédés de traitements complémentaires

١i	rstea
T.	

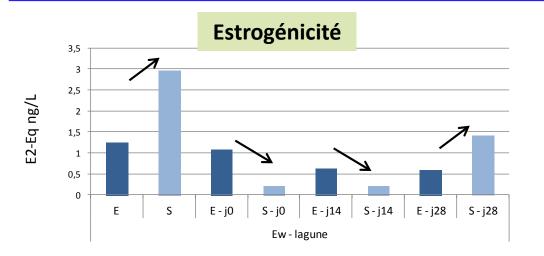
	Aw					Bw				Dw				
	O ₃ + CAG		O ₃ + H ₂ O ₂		UV + H ₂ O ₂		O ₃ + H ₂ O ₂		UV + H ₂ O ₂		Adsorbants		s alternatifs	
	E	S	E	S	E	S	ш	S	E	S	E	S CAG	S argile	S zéolite
Estrogénique	+	-	+	-	+	+	+	-	+	-	+	-	-	+
Androgénique	+	+	-	-	-	-	-	-	-	-	-	-	-	-
Glucocorticoïde	-	-	-	-	-	-	-	-	-	-	+	-	-	-
PAH-like	-	-	-	-	-	-	-	-	:.+±	±;	-	-	-	-
Génotoxicité directe	(. 14	±:	-	-	++	++	++	-	-	-	++	-	-	#
Génotoxicité indirecte	+	+	+	-	+	-	-	-	-	-	-	-	-	++

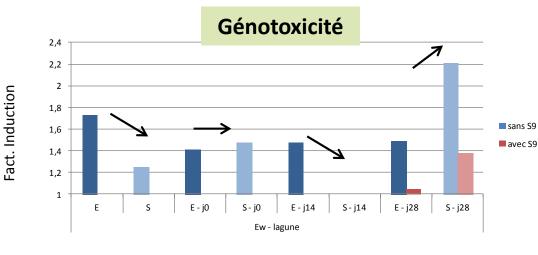
Une diminution de l'effet après traitement

Pas de diminution de l'effet après traitement

- : en dessous des seuils de détection, impossible de conclure sur l'efficacité

Effet de la lagune de finition





Activités œstrogénique et génotoxique : variation aléatoire en sortie de lagune de finition

Résultats à vérifier au regard des temps de séjour

Cohérence avec chimie ciblée (cf. Capdeville)

Profils d'activités

Fréquente: œstrogénique, génotoxiques et HAP-like

Parfois : glucocorticoïdes, androgénique

Jamais détectées : (anti)TR, dioxin-like

Intérêt des échantillonneurs passifs pour concentrer et révéler des activités (GR, AR)

Procédés de traitement globalement efficaces pour abattre ces activités (résultats à approfondir pour la lagune de finition)

Evaluation des boues

3 Boues de STEU

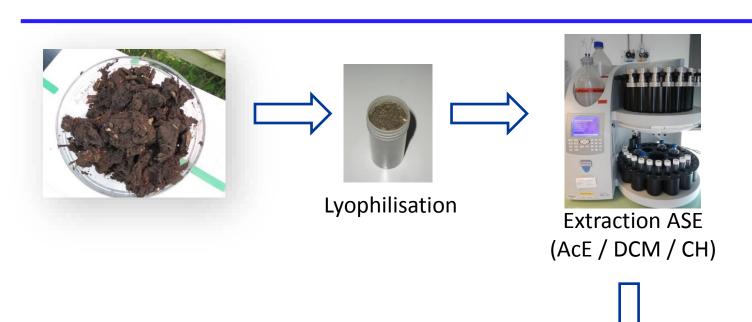
3 procédés de traitement

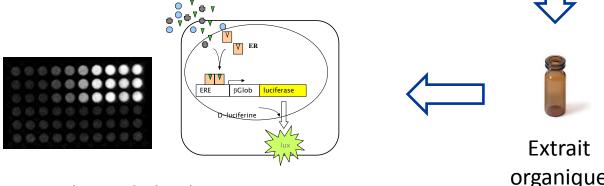
- Séchage solaire

- Compostage

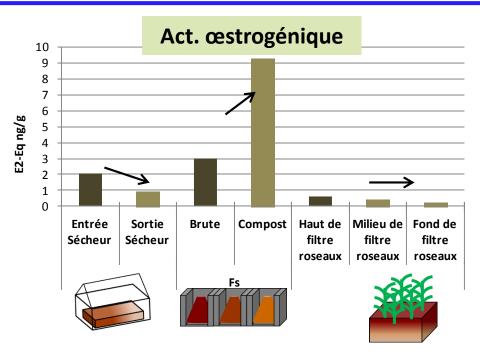
- Lit de séchage planté de roseaux

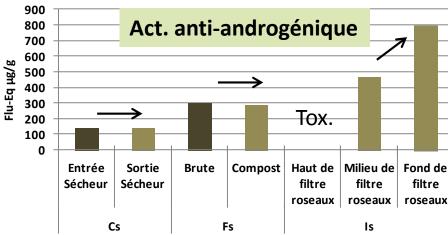
Protocole de bioanalyse des boues

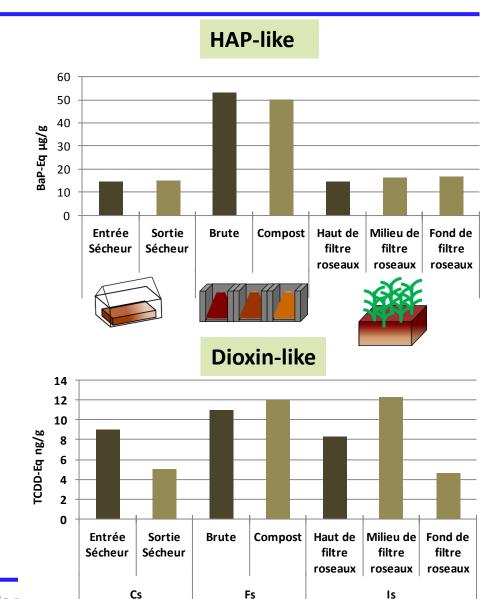




Boues: activités PE






- Fortes activités
 estrogénique (ER) et anti-androgénique
 (anti-AR)
- Pas d'activité AR, GR et TR détectable
- Traitements peu
 efficaces pour abattre
 les activités

Boues: activités dioxin-like

- irstea
- Spectromoren
- EPOC
- SUNIVERSITÉ PARIS SUD Comprendre le monde, construire l'avenire
- INERIS
- ••• envolure
- ADENCE NATIONALE DE LA RECHEICHE

Procédés de traitements inefficaces pour abattre les activités

Profils d'activités marqués

Fortes activités œstrogénique, anti-androgénique et dioxin-like Autres activités non détectées

Procédés de traitement pas ou peu efficaces pour abattre ces activités

Certains verrous méthodologiques

- interférence matricielle (e.g. ac humiques) : cytotoxicité,
 « quenching »
- SOS Chromotest : problèmes de blancs positifs (données génotox ininterprétables)
- → Améliorer la préparation d'échantillon (clean-up) pour une meilleure comparaison chimie ciblée / bioessais in vitro

Bilan sur la compartimentation des activités in vitro

Activités	Eaux	POCIS	SPMD	Boues
Estrogénique	+	++	+/-	+
Glucocorticoïde	+/-	+	-	-
Androgénique	+/-	+	-	-
Anti-Androgénique	+/-	-	+	++
Thyroïdienne	-	-	+/-	-
HAP-like	+	+/-	+	++
Dioxin-like	-	-	-	++
Genotoxicité (SOS)	+	Non mesuré	Non mesuré	(+)

Conclusions

Apports des bioessais *in vitro* basés sur le mécanisme d'action

- ✓ Outils de screening sensibles et quantitatifs
- ✓ Profils d'activité (e.g. eaux vs boues)
- ✓ Intérêt du couplage bioessais / échantillonneurs passifs (concentration, répartition)
- ✓ Informations complémentaires à l'analyse chimique ciblée
- Identité des molécules détectées ?
 - → Cf. Approche EDA (présentation de Nicolas Creusot)
 - → Meilleur diagnostic de danger
 - → Surveillance de sites, optimisation et suivi de procédés

- irstea
- Serviconsemut

- Batterie de tests: autres « endpoints » à considérer
 - Projet ANR-PROOFS (progestagènes)
 - Projet UE-FP7-SOLUTIONS (batterie large de bioessais)
- Standardisation/Normalisation des méthodes
 - AQUAREF (activité estrogénique)
 - Etudes inter-labos (réseau NORMAN; SPI-Effect-based tools/ R. Käse, Eawag)
 - Norme ISO en cours (activité estrogénique)
- Signification des TEQ en terme de danger ?

Perturbateurs endocriniens : intégration de modèles *in vivo* Vers des valeurs seuils *in vitro* ?

Merci de votre attention

