Optimisation d'un processus d'épandage d'engrais

Jonas Koko & Teddy Virin

LIMOS UMR 6158 CNRS - UCA

Séminaire Model. Dev. Durable 7/12/18

Plan

- Motivation
- 2 Modélisation
- Oiscrétisation
- Résultats numériques
- Perspectives

Motivation

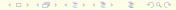
Défauts de fertilisation : Sous-dosage et Sur-dosage

Sur-dosage \Longrightarrow pollution des eaux

Sous-dosage ⇒ baisse de rendement

Objectif

Minimiser les défauts de fertilisation



Motivation

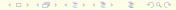
Défauts de fertilisation : Sous-dosage et Sur-dosage

Sur-dosage ⇒ pollution des eaux

Sous-dosage ⇒ baisse de rendement

Objectif

Minimiser les défauts de fertilisation

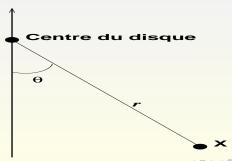


Hypothèses

- Ω champ rectangulaire ou polygonal
- trajectoire du tracteur $s(t) = (s_1(t), s_2(t))$ rectiligne prédéterminée
- vitesse du tracteur constante

Pour $x = (x_1, x_2) \in \Omega$

- r(x,t) distance entre le centre du disque d'épandage et x
- $\theta(x,t)$ angle formé par s(t)x' et s(t)

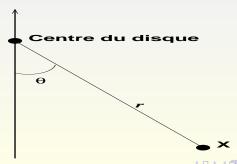


Hypothèses

- Ω champ rectangulaire ou polygonal
- ullet trajectoire du tracteur $s(t)=(s_1(t),s_2(t))$ rectiligne prédéterminée
- vitesse du tracteur constante

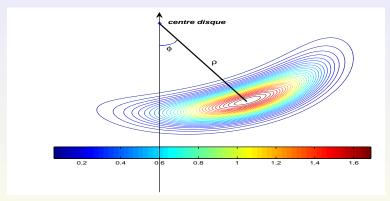
Pour
$$x = (x_1, x_2) \in \Omega$$

- r(x, t) distance entre le centre du disque d'épandage et x
- $\theta(x, t)$ angle formé par $\overrightarrow{s(t)x}$ et s(t)



Repartition

Modélisation simplifiée de la nappe de repartition (Colin 97)



- $d:(0,T)\longrightarrow \mathbb{R}_+$ le débit (en kg/s);
- $\rho: (0, T) \longrightarrow \mathbb{R}_+$ le rayon moyen de distribution (en m);
- $\phi: (0,T) \longrightarrow \mathbb{R}$, l'angle moyen de distribution (en °);

Repartition II

$$q(x, d(t), \rho(t), \phi(t)) = \frac{d(t)}{2\pi\sigma_r\sigma_\theta} \exp\left[-\frac{(r(x, t) - \rho(t))^2}{2\sigma_r^2} - \frac{(\theta(x, t) - \phi(t))^2}{2\sigma_\theta^2}\right]$$

Dispositif d'épandage comporte deux disques (gauche+droite) :

$$q(x, d, \rho, \phi) = q_1(x, d_1, \rho_1, \phi_1) + q_2(x, d_2, \rho_2, \phi_2)$$

Notations

$$y(t) = (d(t), \rho(t), \phi(t))$$
 $q(x; y(t)) = q_1(x; y(t)) + q_2(x; y(t))$

Dose d'engrais reçue au temps t > 0

$$u(x; y(t)) = \int_0^t q(x; y(\tau)) d\tau$$

Repartition II

$$q(x, d(t), \rho(t), \phi(t)) = \frac{d(t)}{2\pi\sigma_r\sigma_\theta} \exp\left[-\frac{(r(x, t) - \rho(t))^2}{2\sigma_r^2} - \frac{(\theta(x, t) - \phi(t))^2}{2\sigma_\theta^2}\right]$$

Dispositif d'épandage comporte deux disques (gauche+droite) :

$$q(x, d, \rho, \phi) = q_1(x, d_1, \rho_1, \phi_1) + q_2(x, d_2, \rho_2, \phi_2)$$

Notations:

$$y(t) = (d(t), \rho(t), \phi(t))$$
 $q(x; y(t)) = q_1(x; y(t)) + q_2(x; y(t))$

Dose d'engrais reçue au temps t > 0

$$u(x;y(t)) = \int_0^t q(x;y(\tau)) d\tau$$

Repartition II

$$q(x, d(t), \rho(t), \phi(t)) = \frac{d(t)}{2\pi\sigma_r\sigma_\theta} \exp\left[-\frac{(r(x, t) - \rho(t))^2}{2\sigma_r^2} - \frac{(\theta(x, t) - \phi(t))^2}{2\sigma_\theta^2}\right]$$

Dispositif d'épandage comporte deux disques (gauche+droite) :

$$q(x, d, \rho, \phi) = q_1(x, d_1, \rho_1, \phi_1) + q_2(x, d_2, \rho_2, \phi_2)$$

Notations:

$$y(t) = (d(t), \rho(t), \phi(t))$$
 $q(x; y(t)) = q_1(x; y(t)) + q_2(x; y(t))$

Dose d'engrais reçue au temps t > 0

$$u(x; y(t)) = \int_0^t q(x; y(\tau)) d\tau$$

Fonction coût

Dose reçue au temps T: u(x; y(T))

Dose consigne : $u_c(x)$

But de l'optimisation

Minimiser l'écart entre dose reçue et dose consigne

Fonction coû

$$E(y) = \frac{1}{2} \| u(y) - u_c \|_{L^2(\Omega)}^2 + \frac{\beta}{2} \| y \|_{L^2(0,T)}^2$$

Fonction coût

Dose reçue au temps T: u(x; y(T))

Dose consigne : $u_c(x)$

But de l'optimisation

Minimiser l'écart entre dose reçue et dose consigne

Fonction coût

$$E(y) = \frac{1}{2} \parallel u(y) - u_c \parallel_{L^2(\Omega)}^2 + \frac{\beta}{2} \parallel y \parallel_{L^2(0,T)}^2$$

Contraintes

Ensemble des paramètres admissibles :

$$K = \left\{ y \in (C^{0,1}(0,T))^6, \ |y_{\ell}(t)| \leq a_{\ell}, \ |y'_{\ell}(t)| \leq b_{\ell}, \ \ell = 1,\ldots,6 \right\}$$

 a_{ℓ} , b_{ℓ} constantes positives telles que $K \neq \emptyset$.

Problème d'optimisation

$$\min_{y \in K} E(y)$$

- E continue, non convexe
- *K* compact de $Y = (C^0(0, T))^6$

Théorème

Il existe au moins une solution au problème d'optimisation

Contraintes

Ensemble des paramètres admissibles :

$$K = \left\{ y \in (C^{0,1}(0,T))^6, |y_{\ell}(t)| \le a_{\ell}, |y'_{\ell}(t)| \le b_{\ell}, |\ell = 1,\ldots,6 \right\}$$

 a_{ℓ} , b_{ℓ} constantes positives telles que $K \neq \emptyset$.

Problème d'optimisation

$$\min_{y \in K} E(y)$$

- E continue, non convexe
- K compact de $Y = (C^0(0, T))^6$

Théorème

Il existe au moins une solution au problème d'optimisation

Temps

$$\delta = T/n, t_i = i\delta$$

$$y^i = y(t_i), u^n(x) = u(x; y(T))$$

Méthode des trapèzes

$$u^n(x) = \sum_{i=0}^n w_i q(x; y^i)$$

Fonction coût

$$E_{\delta}(y) = \frac{1}{2} \| u^{n}(x) - u_{c}(x) \|_{L^{2}(\Omega)}^{2}$$

Ensemble des paramètres admissibles

$$\mathcal{K}_{\delta} = \left\{ m{y} \in \mathbb{R}^{N}; \ |y_{\ell}^{i}| \leq a_{\ell}, \ \frac{1}{\delta} |y_{\ell}^{i+1} - y_{\ell}^{i}| \leq b_{\ell}; \ i = 0, \dots, n, \ \ell = 1, \dots, 6 \right\}$$

Espace

 Ω polygonal (rectangulaire), Ω_e quadrilatère

$$\bar{\Omega} = \bigcup_{e=1}^M \Omega_e$$

$$E_{\delta h}(\mathbf{y}) = \frac{1}{2} \sum_{e=1}^{P_h} \int_{\Omega_e} (u_h^n(x) - u_c(x))^2 dx.$$

 u_h^n approximation bilinéaire de u^n sur Ω_e .

$$E_{\delta h}(\mathbf{y}) = \frac{1}{8} \sum_{e=1}^{M} \sum_{j=1}^{4} |\Omega_e| \left(u_h^n(x_e^j) - u_c(x_e^j) \right)^2.$$

Espace

 Ω polygonal (rectangulaire), Ω_e quadrilatère

$$\bar{\Omega} = \bigcup_{e=1}^{M} \Omega_{e}$$

$$E_{\delta h}(\mathbf{y}) = \frac{1}{2} \sum_{e=1}^{P_h} \int_{\Omega_e} (u_h^n(x) - u_c(x))^2 dx.$$

 u_h^n approximation bilinéaire de u^n sur Ω_e .

$$E_{\delta h}(\mathbf{y}) = \frac{1}{8} \sum_{e=1}^{M} \sum_{j=1}^{4} |\Omega_e| \left(u_h^n(x_e^j) - u_c(x_e^j) \right)^2.$$

Calcul du gradient

y contrôle, un variable d'état

Equation d'état :

$$F(u_j^n, y) = u_j^n - \sum_{i=0}^n w_i q(x^j; y^i) = 0, \quad j = 1, \dots, m.$$

Variable adjointe $p_j = p(x^j)$

$$p_j = \frac{\partial E_{\delta h}(\mathbf{y})}{\partial u_j^n} = \sum_{e \in V_j} \frac{|\Omega_e|}{4} \left(u_j^n - u^*(x^j) \right), \quad j = 1, \dots, m$$

Gradient de $E_{\delta t}$

$$\frac{\partial E_{\delta h}(\mathbf{y})}{\partial y^k} = \frac{\partial E_{\delta h}(\mathbf{y})}{\partial y^k} + \sum_{j=1}^m \frac{\partial}{\partial y^k} F(u_j^n, y) \cdot p_j = \sum_{j=1}^m w_k \frac{\partial q(x^j; y^k)}{\partial y^k} p_j$$

Calcul du gradient

y contrôle, un variable d'état

Equation d'état :

$$F(u_j^n, y) = u_j^n - \sum_{i=0}^n w_i q(x^i; y^i) = 0, \quad j = 1, \dots, m.$$

Variable adjointe $p_j = p(x^j)$

$$p_j = \frac{\partial E_{\delta h}(\boldsymbol{y})}{\partial u_j^n} = \sum_{\boldsymbol{e} \in V_j} \frac{|\Omega_{\boldsymbol{e}}|}{4} \left(u_j^n - u^*(\boldsymbol{x}^j) \right), \quad j = 1, \dots, m$$

Gradient de $E_{\delta t}$

$$\frac{\partial E_{\delta h}(\boldsymbol{y})}{\partial y^k} = \frac{\partial E_{\delta h}(\boldsymbol{y})}{\partial y^k} + \sum_{j=1}^m \frac{\partial}{\partial y^k} F(u_j^n, y) \cdot p_j = \sum_{j=1}^m w_k \frac{\partial q(x^j; y^k)}{\partial y^k} p_j$$

Calcul du gradient

y contrôle, uⁿ variable d'état

Equation d'état :

$$F(u_j^n, y) = u_j^n - \sum_{i=0}^n w_i q(x^j; y^i) = 0, \quad j = 1, \dots, m.$$

Variable adjointe $p_j = p(x^j)$

$$p_j = \frac{\partial E_{\delta h}(\boldsymbol{y})}{\partial u_j^n} = \sum_{\boldsymbol{e} \in V_j} \frac{|\Omega_{\boldsymbol{e}}|}{4} \left(u_j^n - u^*(\boldsymbol{x}^j) \right), \quad j = 1, \dots, m$$

Gradient de $E_{\delta h}$

$$\frac{\partial E_{\delta h}(\mathbf{y})}{\partial y^k} = \frac{\partial E_{\delta h}(\mathbf{y})}{\partial y^k} + \sum_{j=1}^m \frac{\partial}{\partial y^k} F(u_j^n, y) \cdot p_j = \sum_{j=1}^m w_k \frac{\partial q(x^j; y^k)}{\partial y^k} p_j$$

Problème d'application

$$\Omega = (0, 12) \times (0, 100)$$

- Dose consigne 80Kg/Ha
- Vitesse tracteur 10km/h, $t \in (0, 46.8) \cup (46.8, 93.6)$ en secondes
- Constantes nappe $\sigma_r = 0.85, \, \sigma_\theta = 19.3^\circ$

Problème d'application

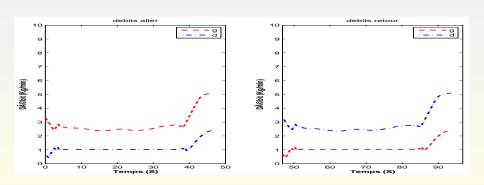
$$\Omega = (0, 12) \times (0, 100)$$

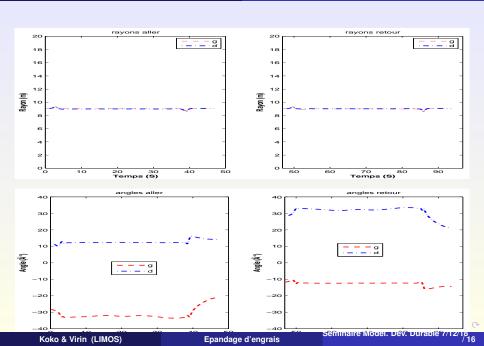
- Dose consigne 80Kg/Ha
- Vitesse tracteur 10km/h, $t \in (0, 46.8) \cup (46.8, 93.6)$ en secondes
- Constantes nappe $\sigma_r = 0.85, \, \sigma_\theta = 19.3^\circ$

Discrétisation

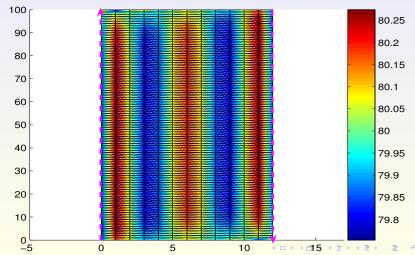
- Discrétisation : $\delta = 0.18s \Longrightarrow 3132$ variables
- Ω_e carré d'1m de coté \Longrightarrow 1313 points de calcul de dose

Solveur: IPOPT (L-BFGS+Points intérieurs, www.coin-or.org)





Carte de dose



Modélisation II

Epandage ≡ Diffusion

$$\partial_t u(x,t) - \nu \Delta u(x,t) = f(x,t) \operatorname{dans} \Omega \times (0,T)$$

$$u(x,t) = 0 \operatorname{sur} \partial \Omega \times (0,T)$$

$$u(x,0) = 0 \operatorname{dans} \Omega.$$