Soft clustering: a review of k-means variants

V. Antoine

Clermont Auvergne University, LIMOS, UMR CNRS 6158, France

September 2018

Clustering

Determine the group of objects following a similarity notion

Clustering

Determine the group of objects following a similarity notion

Partition types

- Let $\mathbf{X} = (\mathbf{x}_i)$ be a collection of objects s.t. $\mathbf{x}_i \in \mathbb{R}^p$,
- $\Omega = \{\omega_1 \dots \omega_c\}$ a set of c clusters,

Hard and soft partitions:

- hard/crisp partition
- fuzzy partition
- possibilistic partition
- rough partition
- credal partition

Outline: the soft variants of k-means

- 1 k-means
- 2 fuzzy c-means
- 3 rough k-means
- 4 possibilistic c-means
- 6 evidential c-means
- 6 Conclusion

Outline

- 1 k-means
- 2 fuzzy c-means
- 3 rough k-means
- 4 possibilistic c-means
- 6 evidential c-means
- 6 Conclusion

Hard partition

• Each object is assigned to one and only one cluster

$$\bullet P = (p_{ik}) \text{ s.t } p_{ik} \in \{0,1\}, \sum_{k=1}^{c} p_{ik} = 1$$

Example

Let ω_1 be the class of square, ω_2 the class of round

	p_{i1}	p_{i2}
O	0	1
	1	0
	1	0

k-means

Geometrical model:

- Each cluster ω_k is represented by a center \mathbf{v}_k
- Euclidean distance $d_{ik}^2 = \|\mathbf{x}_i \mathbf{v}_k\|^2$

k-means

Geometrical model:

- Each cluster ω_k is represented by a center \mathbf{v}_k
- Euclidean distance $d_{ik}^2 = \|\mathbf{x}_i \mathbf{v}_k\|^2$

k-means

Objective function

$$J_{KM} = \sum_{i=1}^{N} \sum_{k=1}^{c} p_{ik} d_{ik}^{2}$$

Subject to

$$\sum_{k=1}^{c} p_{ik} = 1 \text{ and } p_{ik} \in \{0,1\} orall i, k$$

Optimization

NP-Hard \Rightarrow minimization using an iterative procedure:

$$\operatorname{fix} \mathbf{V}, \min_{\mathbf{P}} J_{KM} \quad \rightleftarrows \quad \operatorname{fix} \mathbf{P}, \min_{\mathbf{V}} J_{KM}$$

Advantage

Fast

Disadvantage

Risk of local minimum

For c=1 to 10

- run kmeans
- evaluate the partition

Plot evaluation measure vs number of clusters

Applications

- Biology and Bioinformatics
 - Protein structure prediction
 - Gene expression
- Engineering
 - Encoding/decoding
 - Image retrieval system
 - Color image segmentation
- Business and Economics
 - Exploration of shopping orientations [10]
 - Marketing
- Faud detection [6]

Problematic

Solution

Express uncertainty about the clustering result

Fuzzy partition

Each object has a degree of membership to each cluster

•
$$\mathbf{U} = (u_{ik}) \text{ s.t } u_{ik} \in [0,1], \sum_{k=1}^{c} u_{ik} = 1$$

Example

Let ω_1 be the class of square, ω_2 the class of round

	p_{i1}	p_{i2}
O	0	1
	1	0
	0.9	0.1
\Box	0.5	0.5

Outline

- 1 k-means
- 2 fuzzy c-means
- 3 rough k-means
- 4 possibilistic c-means
- 6 evidential c-means
- 6 Conclusion

Fuzzy c-means (FCM)

Objective function

$$J_{FCM} = \sum_{i=1}^{N} \sum_{k=1}^{C} u_{ik}^{\beta} d_{ik}^{2}$$

Subject to

$$\sum_{k=1}^{C} u_{ik} = 1 \text{ and } u_{ik} \ge 0 \quad \forall i, k$$

Aternate optimization

$$\underset{\mathbf{U}}{\min} J_{FCM} \quad \rightleftarrows \quad \underset{\mathbf{V}}{\min} J_{FCM}$$

Fuzzy *c*-means (FCM)

Applications

Same as k-means, but avoid decision threshold. Example : Characterization of snow facies [8]

Solution

Relax the sum constraint

Problematic: where are the limits of an uncertain region?

Problematic: where are the limits of an uncertain region?

Solution

Express for each cluster ω_k a lower approximation $\underline{\omega}_k$ and an upper approximation $\overline{\omega}_k$

Rough partition

- Each object has a lower/upper approximation to each cluster
- $(\overline{\lambda}, \underline{\lambda}) = ((\overline{\lambda}_{ik}), (\underline{\lambda}_{ik}))$ s.t $\overline{\lambda}_{ik}, \underline{\lambda}_{ik} \in \{0, 1\}$,
 - if $\mathbf{x}_i \in \underline{\omega_k}$ then $\underline{\lambda}_{ik'} = 1$ and $\sum_{k=1}^c \overline{\lambda}_{ik} = 0$,
 - otherwise, $\sum_{k=1}^{c} \underline{\lambda}_{ik} = 0$ and $\sum_{k=1}^{c} \overline{\lambda}_{ik} \geq 1$.

Example

Let ω_1 be the class of square, ω_2 the class of round

	λ_{i1}	$\overline{\lambda}_{i1}$	λ_{i2}	$\overline{\lambda}_{i2}$
O	1	0	0	0
	0	0	1	0
	0	0	1	0
\Box	0	1	0	1

Outline

- 1 k-means
- 2 fuzzy c-means
- 3 rough k-means
- 4 possibilistic c-means
- 6 evidential c-means
- 6 Conclusion

Rough c-means

Objective function

$$J_{RCM} = \sum_{i=1}^{N} \sum_{k=1}^{C} \frac{\gamma}{\underline{n}_{k}} \underline{\lambda}_{ik} d_{ik}^{2} + \frac{1-\gamma}{\overline{n}_{k}} \overline{\lambda}_{ik} d_{ik}^{2}$$

such that

- $\quad \gamma \in [\text{0 1}] \text{ is a fixed} \\ \text{weight}$
- $\underline{n}_k/\overline{n}_k$ are the number of objects in $\underline{\omega}_k/\overline{\omega}_k$

Subject to

$$\left(\sum_{k=1}^{c} \underline{\lambda}_{ik} = 1 \vee \sum_{k=1}^{c} \underline{\lambda}_{ik} = 0\right) \wedge \left(\sum_{k=1}^{c} \underline{\lambda}_{ik} = 0 \vee \sum_{k=1}^{c} \underline{\lambda}_{ik} \geq 2\right) \text{ and } \\ \overline{\lambda}_{ik}, \underline{\lambda}_{ik} \in \{0,1\} \quad \forall i,k$$

Aternate optimization

$$\min_{\lambda,\overline{\lambda}} J_{RCM} \quad \rightleftarrows \quad \min_{\mathbf{V}} J_{FCM}$$

Rough c-means [7]

Applications

Great interest on boundary regions:

- Biology and Bioinformatics
- Medical imagery [5]
- Forest cover data
- Business and Economics
- Website profiles [4]
- •

Problematic

Possibilistic partition

- Each object has a degree of possibility to each cluster
- $T = (t_{ik}) \text{ s.t } t_{ik} \in [0, 1]$

Example

Let ω_1 be the class of square, ω_2 the class of round

	t_{i1}	t_{i2}
O	0	1
	1	0
	1	0.1
\Box	1	1
*	0	0

Possibilistic transformations

Outline

- k-means
- 2 fuzzy c-means
- 3 rough k-means
- 4 possibilistic c-means
- 6 evidential c-means
- 6 Conclusion

Possibilistic c-means (PCM)

Objective function

$$J_{PCM} = \sum_{i=1}^{N} \sum_{k=1}^{C} t_{ik}^{eta} d_{ik}^2 + \sum_{k=1}^{c} \gamma_k \sum_{i=1}^{N} (1 - t_{ik})^m$$

Subject to

$$t_{ik} \geq 0 \quad \forall i, k$$

Aternate optimization

$$\min_{\mathbf{T}} J_{PCM} \quad \rightleftharpoons \quad \min_{\mathbf{T}} J_{PCM}$$

Possibilistic *c*-means (PCM)

Applications

Same as FCM, but handles outliers.

Example: sonar image segmentation [11]

Problematic

Can we represent uncertain region and outliers with a mathematical framework ?

Credal partition

Uncertainties represented with subsets of $\Omega = \{\omega_1, \dots, \omega_c\}$

Credal partition

- Each object has a degree of belief to each subset $A_j \subseteq \Omega$
- ullet $\mathbf{M}=(m_{ij})$ s.t $m_{ij}\in[0,1], \sum_{A_i\subseteq\Omega}m_{ij}=1$

Example

Let ω_1 be the class of square, ω_2 the class of round

	$m_{i\emptyset}$	$m_{i\omega_1}$	$m_{i\omega_2}$	$m_{i\Omega}$
O	0	0	1	0
	0	1	0	0
	0	0.9	0.1	0
\Box	0	0	0	1
₹	1	0	0	0

Derivative notions

Belief function

Total support given to A: $bel(A) = \sum_{B \subseteq A} m(B),$

Plausibility function

Potential degree of belief that could be given to A: $pl(A) = \sum_{i=1}^{n} m(B_i),$

$$\forall A \subseteq \Omega, A \neq \emptyset$$

 $B \cap A \neq \emptyset$

Credal transformations

Credal transformations

Making decision: the pignistic transformation

$$\mathit{BetP}(\omega) = rac{1}{1 - \mathit{m}(\emptyset)} \sum_{\{A \subseteq \Omega | \omega \in A\}} rac{\mathit{m}(A)}{|A|}$$

pignistic

transformati

Credal partition

	$m_{i\emptyset}$	$m_{i\omega_1}$	$m_{i\omega_2}$	$m_{i\Omega}$
O	0	0	1	0
	0	1	0	0
	0	0.9	0.1	0
\Box	0	0	0	1
☆	1	0	0	0

Fuzzy partition

	r u==y puroron			
		$u_{i\omega_1}$	$u_{i\omega_2}$	
	O	0	1	
		1	0	
→ on		0.9	0.1	
•	\Box	0.5	0.5	
	₹	0.5	0.5	

Outline

- k-means
- 2 fuzzy c-means
- 3 rough k-means
- 4 possibilistic c-means
- 6 evidential c-means
- 6 Conclusion

Evidential c-means (ECM)

- Each cluster ω_k is represented by a center \mathbf{v}_k
- Centroid $\overline{\mathbf{v}}_j$: barycenter of centers associated to classes composing $A_i \subseteq \Omega$
- ullet Distance d_{ij}^2 between ${f x}_i$ and ${f \overline v}_j$

Evidential c-means (ECM)

- Each cluster ω_k is represented by a center \mathbf{v}_k
- Centroid $\overline{\mathbf{v}}_j$: barycenter of centers associated to classes composing $A_i \subseteq \Omega$
- ullet Distance d_{ij}^2 between ${f x}_i$ and ${f \overline v}_j$

Evidential c-means (ECM)

Objective function

$$J_{ECM} = \sum_{i=1}^{N} \sum_{A_{j} \subseteq \Omega, \ A_{j} \neq \emptyset} |A_{j}|^{\alpha} m_{i} (A_{j})^{\beta} d_{ij}^{2} + \sum_{i=1}^{N} \delta^{2} m_{i} (\emptyset)^{\beta}$$

Subject to

$$\sum_{A_i\subseteq\Omega,\;A_i
eq\emptyset}m_i(A_j)+m_i(\emptyset)=1\; ext{and}\;m_i(A_j)\geq0\quadorall i,j$$

Alternate optimization

$$opt(\mathbf{M}) \leftrightarrows opt(\mathbf{V})$$

ECM: hard credal partition

ECM: lower, upper bound and outliers

Applications

• medical image processing [3]

• machine prognosis [9]

analysis of social

networks [12]

Problematic

c clusters $\Rightarrow 2^c$ subsets!

Outline

- 1 k-means
- 2 fuzzy c-means
- 3 rough k-means
- 4 possibilistic c-means
- 6 evidential c-means
- 6 Conclusion

Clustering

- k-means
 - + real time constraint, big data, hard decision to make
- fuzzy c-means
 - + handle overlapped clusters
- rough k-means
 - + hard decision to make with overlapped clusters, upper and lower belief on that decision
- possibilistic c-means
 - + separate analysis of each cluster results, outliers
 - mathematical framework with properties complex to handle
- evidential c-means
 - + strong partition analysis possible
 - small number of clusters

Partition types

References I

V. Barra, V. Delouille, M. Kretzschmar, and J. Hochedez.

Fast and robust segmentation of solar euv images: algorithm and results for solar cycle 23. Astronomy & Astrophysics, 505(1):361–371, 2009.

A. Chidambaram, H. Fillmore, T. Van Meter, C. Dumur, and W. Broaddus.

Novel report of expression and function of cd97 in malignant gliomas: correlation with wilms tumor 1 expression and glioma cell invasiveness. Journal of neurosurgery, 116(4):843–853, 2012.

B. Lelandais, S. Ruan, T. Denœux, P. Vera, and I. Gardin.

Fusion of multi-tracer pet images for dose painting. *Medical image analysis*, 18(7):1247–1259, 2014.

P. Lingras and C. West.

Interval set clustering of web users with rough k-means. *Journal of Intelligent Information Systems*, 23(1):5–16, 2004.

P. Maii and S. Pal.

Rough set based generalized fuzzy c-means algorithm and quantitative indices.

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 37(6):1529–1540, 2007.

G. Münz. S. Li. and G. Carle.

Traffic anomaly detection using k-means clustering. In *GI/ITG Workshop MMBnet*, pages 13–14, 2007.

G. Peters.

Some refinements of rough k-means clustering. *Pattern Recognition*, 39(8):1481–1491, 2006.

References II

P. Rizzoli, M. Martone, H. Rott, and A. Moreira.

Characterization of snow facies on the greenland ice sheet observed by tandem-x interferometric sar data. Remote Sensing, 9(4):315, 2017.

L. Serir, E. Ramasso, and N. Zerhouni.

Evidential evolving gustafson-kessel algorithm for online data streams partitioning using belief function theory.

International Journal of Approximate Reasoning., 53(5):747–768, 2012.

O. Vincent, A. Makinde, O. Salako, and O. Oluwafemi,

A self-adaptive k-means classifier for business incentive in a fashion design environment.

Applied computing and informatics, 14(1):88–97, 2018.

A. Zare, N. Young, D. Suen, T. Nabelek, A. Galusha, and J. Keller.

Possibilistic fuzzy local information c-means for sonar image segmentation.

In Computational Intelligence (SSCI), 2017 IEEE Symposium Series on, pages 1–8, IEEE, 2017.

K. Zhou, A. Martin, Q. Pan, and Z. Liu,

Median evidential c-means algorithm and its application to community detection.

Knowledge-Based Systems, 74:69-88, 2015.

Thank you