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Clustering : a technique of Machine Learning
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Clustering

Determine the group of objects following a similarity notion

Structure of
clustering

@ Clustering
algorithm

Graphs Features  relational
O - data Dendrogram  Partition =~ Map

V. Antoine Soft clustering: a review of k-means variants 3/51



Clustering

Determine the group of objects following a similarity notion

@ Clustering Structure of
algorithm clustering

V N
Graphs = Features = relational |
7 ' data Dendrogram  Partition Map

V. Antoine Soft clustering: a review of k-means variants 3/51



Partition types

@ Let X = (x;) be a collection of objects s.t. x; € R”,

© Q={wi...wc} a set of ¢ clusters,

Hard and soft partitions:
@ hard/crisp partition
@ fuzzy partition
@ possibilistic partition
@ rough partition

@ credal partition
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Qutline : the soft variants of k-means

@ k-means

© fuzzy c-means

© rough k-means

@ possibilistic c-means
© cvidential c-means

@ Conclusion
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k-means

Outline

@ k-means
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k-means
Hard partition

@ Each object is assigned to one and only one cluster

C
o P=(py)stpyecf01} > pu=1
k=1

Let wy be the class of square, wy the class of round

‘ pi1 P2
Olo 1
O] 1 o
Q|1 o
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k-means

k-means

Geometrical model:
@ Each cluster wy is represented by a center v

@ Euclidean distance d3 = ||x; — v||?

. + + 4
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k-means
k-means

Objective function

N ¢ c
Jkm = ZZp;kd,-i ;Pik =1 and pjy € {0,1}Vi, k
=i (=il =

Optimization

NP-Hard = minimization using an iterative procedure:
fix V, mpin Jkvy =2 fix P, mvin Jxm

Advantage Disadvantage
Fast Risk of local minimum
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k-means

Determination of the number of clusters

GgussK4 dgtasgt

12 T

10 -

For c=1 to 10

@ run kmeans

@ evaluate the partition

Plot evaluation measure vs
number of clusters
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k-means
Determination of the number of clusters
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Jx 103
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number of clusters
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k-means
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k-means
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k-means

Applications
@ Biology and Bioinformatics R 5
o Protein structure ¥ b3
prediction =
s Gene expression — = G
@ Engineering L &

@ Encoding/decoding
o Image retrieval system
o Color image segmentation

@ Business and Economics

@ Exploration of shopping —_ﬁl‘l‘r—- 3 3
orientations [10] ———— T r—
o Marketing l.%;%* Té@* *Eg*

www.olivier-augereau.com/blog/?p=358

(]

Faud detection [6]
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k-means

Problematic

+

Express uncertainty about the clustering result

V. Antoine
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k-means
Fuzzy partition

@ Each object has a degree of membership to each cluster

o U= (uy) st uye[0,1], Z ug =1
k=1

Let wy be the class of square, wy the class of round
‘ Pi1 Pi2
O|o0 1
Ol o
|09 o1
D 0.5 0.5

V. Antoine Soft clustering: a review of k-means variants 14/51



Outline

© fuzzy c-means
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Fuzzy c-means (FCM)

Objective functin
C

Zuik:]. and Uik 20 Vi,k
k=1

Aternate optimization

mUi nJ FCM = m\jn J FCM

V. Antoine Soft clustering: a review of k-means variants 16/51



FCM

-means (FCM)

Original data
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FCM

Applications

Same as k-means, but avoid decision threshold.
Example : Characterization of snow facies [8]

Cluster 1l

Cluster 1 W Cluster 2

Cluster 1 Cluster 2 [ Cluster 38
Cluster 2 [ Cluster 3 [ Cluster 4
Cluster 3 W Cluster 4 H Cluster 5l
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FCM

Problematic: outliers

+
+ +
Vix * Vo
+ + + + + o+
+ +
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FCM

Problematic: outliers

+
+ +
Vix * V2
+ + F———7F + +
dfl — df?
+ = up = uip=0.5 +
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FCM

Problematic: outliers

dil — diQ

= Uj1 = Ujp = 0.5

+ +
Vix Vo
+ + + + + +
+ +
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FCM

Problematic: outliers

dil — diZ

= Uj1 = Ujp = 0.5

+ +
Vix Vo
+ + + + + + +
+ +

Relax the sum constraint
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FCM

Problematic: where are the limits of an uncertain region 7

- Area with uncertainties
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FCM

Problematic: where are the limits of an uncertain region 7

Gt
%, 3l
H ii}}rﬁ W
e
+ ﬁ& 4+ {?f

Express for each cluster wy a lower approximation w, and an upper
approximation wy
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FCM

Rough partition

@ Each object has a lower/upper approximation to each cluster
o (A A) = ((Nik)s (Aix)) st X, Ay € {0, 1},

o if x; € wy then Ay, =1 and ink =0,
k=1

@ otherwise, ZA,-k =0 and ink > 1
k=1 k=1

Let wy be the class of square, wy the class of round

| dn X | A e

Ol1 o]0 o
Olo o1 o
Qlo o1 o
Do 1|0 1
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Outline

© rough k-means
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RKM

Rough c-means

such that
Objective function @ y€[01]is a fixed
weight

@ n, /Ny are the number
of objects in w, /Wi

i, Ak € {0,1} Vi k

Aternate optimization

min JRCM = min JFCM
A7X V

V. Antoine Soft clustering: a review of k-means variants 23/51



RKM

Rough c-means [7]

0.2 0.4 0.6 0.8 1

O Boundary Area A Lower Approximation [l Mean
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Applications

Great interest on boundary
regions:

Biology and Bioinformatics

Medical imagery [5] B}
A(Worker)
Forest cover data
A(Worker)

Business and Economics
Website profiles [4]

"A(Crammer)

‘}En ammer)
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Problematic

1.1 4

0.9 1

Outlier ?
0.7

lgnl

0.5

0.3

OO,

0.1 1

0.2 0.4 0.6 0.8 1

O Boundary Area A Lower Approximation [l Mean
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RKM

Possibilistic partition

@ Each object has a degree of possibility to each cluster
o T= (t,'k) s.t tix € [0, 1]

Let wy be the class of square, wy the class of round
tin it
Olo 1
Ol 1r o
D 1 01
D 1 1
* 0 0
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RKM

Possibilistic transformations

Possibilistic partition

tir  tp2
O|o0o 1
|1 o
Q|1 o1
D1 1
|0 0

c
ik = maxti
Pi naxti

V. Antoine

Fuzzy partition

Uil ui2
O] o 1
Ol : 0
O | o091 0.09
D 05 05
%! ? ?

Hard partition

Pi1 Pi2
O|o0 1
|1 o
Q|1 o
D ? ?
* ? ?
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Outline

@ possibilistic c-means
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PCM

Possibilistic c-means (PCM)

Objective function

JPCM:ZZtﬁ(dk—I—ZwZ (1 — ty)™ tix >0 Vi k \
k=1 i=1

i=1 k=1

Aternate optimization

m_lin JPCM = m\jn JPCM

V. Antoine Soft clustering: a review of k-means variants 30/51



0
3
c
RO
=
©
>
@
c
©
o [
w x
s
-
+ H
* ¢
©
. . .
- g o
2 s
+ Qe
—~
[
M J< £
Al o
@) z
1 <
a >
~— 1
. y
(2] + .
"
c e
T AR
+ o+ H
() Y +M+%ﬁ#i+¢+#+ la =
m + +¢##ﬂwﬁm++¢ 3
|

+ ++% 1
+
[ty

e To—

o 4
ALY
I s U
+ E
+ o+ 1

Istic ¢

Possibil




Applications

Same as FCM, but handles outliers.
Example : sonar image segmentation [11]

o ¥ 4
PFCM Cluster 1 PFCM Cluster 2 PFCM Cluster 3

r~ ~

r~
1

Outlier - Typicality ~ Outlier - Typicality ~ Outlier - Typicality
& Cluster 1 Cluster 2 Cluster 3
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9
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T
S
Q2
0
(©)
hl
o

Can we represent uncertain region and outliers with a

mathematical framework 7

o+
+HE

10

Ty
A Sy
TR

TR 4

+ + +

Area with uncertainties

16

14

33/51

Soft clustering: a review of k-means variants

V. Antoine



PCM

Credal partition

Uncertainties represented with subsets of Q = {w1,...,w.}
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PCM

Credal partition

@ Each object has a degree of belief to each subset A; C Q2

o M= (my) st mj€0,1], Z mjj =1
ACQ

Let wy be the class of square, wy the class of round
mig  Miy,, My, MiQ
O 0 0 1 0
D 0 1 0 0
D 0 0.9 0.1 0
D 0 0 0 1
* 1 0 0 0

V. Antoine Soft clustering: a review of k-means variants



PCM

Derivative notions

Belief function a

Total support given to A:

bel(A) = > m(B), @‘
BCA X
=
Potential degree of belief a
that could be given to A: A
pi(A)= Y m(B),

BRA#D %“

VAC QA% =

A\
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PCM

Credal transformations

Possibilistic partition, ~» \

tin  t

Oj o0 1

Credal partition R 0

myy My, My, MiQ / D 09 01

90 1 o o ™ Flo oo
3]l o 09 01 0 \
0 0 0 1 A

% 1 0 0 0 be/’.@f tih  t

O|/o0 1

Ol 1 o

(J]|09 o1

DOl o 0

% | 0 0
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Making decision :

PCM

Credal transformations

BetP(w) =

the pignistic transformation

1
@) 2

{ACQ|weA}

1—m

m(A)

Al

Credal partition

Mmjg  Miwy,  Miw,  MiQ
Ol o 0 1 0
| o 1 0 0
Q| o 09 o001 o0
D o 0 0 1
w1 0 0 0

V. Antoine

pignistic

transformation

Fuzzy partition

Ui,  Ujw,

0 1

O] 1t 0
Q|09 o1
|05 05
¥% | 05 05
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Outline

© cvidential c-means
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ECM

Evidential c-means (ECM)

@ Each cluster wy is represented by a center v
@ Centroid V; : barycenter of centers associated to classes composing
A CQ

@ Distance d,-f- between x; and V;

af ]
x
3 . ]
«
x
A X ]
W xx x
“ x & xx Vv
i« 1 1
*x X% x * x
L *xo % * xxx x* xx 4
O 2
P T
°
Ab, R R ,
LR
2 * ® xx *
sl ]
4l ]
2 0 2 4 6 8
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ECM

Evidential c-means (ECM)

@ Each cluster wy is represented by a center v
@ Centroid V; : barycenter of centers associated to classes composing
A CQ

@ Distance d,-f- between x; and V;

LY * o o
: \ o Vi
e e ©
DR el TR
-1 ol IR vl;
.
—2|* » x
o
-2 0 2 4 6 8
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ECM

Evidential c-means (ECM)

N N
Jeem =Y. > A mi(A)PdE + > 82 mi(0)°
i=1

i=1 AjCQ, Aj#D

> mi(A)+ mi(0) =1and mi(A;) >0 Vi,j
AiCQ, Ai#£D

Alternate optimization

opt(M) = opt(V)
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ECM

ECM: hard credal partition

11 (]
10 + (<]
9r (<]
sl
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ECM

ECM: lower, upper bound and outliers

bel w. l
D
AN}
+ Ple, | g0
- - =bel w
plw,
+9 +
<
8
0,
? ~—
7
6 +
5
W0 +
3
T mempiyset
. . . Ly . . . . . . . . . L . . . ! | . .
4 5 6 7 10 11 12 13 14 15 4 5 6 7 8 9 10 1 12 13 14 15
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Applications

@ medical image processing [3]

@ machine prognosis [9]

@ analysis of social
networks [12]

e,

W 2>
15V

V. Antoine

"

{Hy} {Hp} {Hy, Hy}

Belief mass estimation

— o oot Tous 00ss 006 0065 007 0075 008 008
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Problematic

¢ clusters = 2€ subsets !

—{1—evidential framework
—J— other soft framework

subsets number

clusters number
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Conclusion

Outline

@ Conclusion
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Conclusion

Clustering

@ k-means
+ real time constraint, big data, hard decision to make

(]

fuzzy c-means
+ handle overlapped clusters

rough k-means
-+ hard decision to make with overlapped clusters, upper and
lower belief on that decision

possibilistic c-means

+ separate analysis of each cluster results, outliers
- mathematical framework with properties complex to handle

evidential c-means

(]

-+ strong partition analysis possible
- small number of clusters
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Conclusion
Partition types

generalization

|creda| partition|
plausibility
3 |
- O T .
. possibilistic
o0 partition
fuzzy rough
artition . maximum artition
p ’773)(/,77“ x p
hard partition
complexity
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Conclusion

Thank you
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