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Kriging meta-model

Framework

Framework
Design of Experiments.
Monitoring framework (environment, health, climate, . . . ). Examples :
Pollution of a lake, volcanic eruption, etc.
Approximately known phenomenon.
Acquisition of spatial data : sensor positions (fixed or mobile).

−→ More accurate knowledge in "critical" areas.
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Kriging meta-model

Meta-model

Mapping of y(x)

E is an n × n grid
y(x) value of the variable of interest for x ∈ E ;
y ∼ N (µ,Σ) is a Gaussian field ;
Σ is a known covariance matrix .
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Kriging meta-model

k-point design

Aim
Getting information on y(x) by observing k points : y(x1), ..., y(xn)

How to choose the points ?
First, specify the goal of the experiment.
Then define a criterion.
At last construct the k-point design D∗ = {x∗1 , ..., x∗k} that minimizes
the criterion.
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Kriging meta-model

Updating formula

From a k-point design D = {x1, ..., xk}, we get the observations
yD = {yx1 , ..., yxk}.
For x /∈ D, we get an updated mean and variance :

Updated mean

µ(x) | yD = µ(x) + Cov ((y(x); yD) · {Var(yD)}−1 · (yD − µD)

Updated Variance

Var (y(x) | yD) = Var(y(x))−Cov (y(x); yD)·{Var(yD)}−1 ·Cov (yD; y(x))

The updated variance does not depend on the observations yD, but only on
the location of the design points D !
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Kriging meta-model

Example of updated variance

3-point design.

The variance decreases all around
these points.

When a new point is added, the
covariance matrix can be
updated.

Map of variance.
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Kriging meta-model

Example of updated variance

4-point design.

The variance decreases all around
these points.

When a new point is added, the
covariance matrix can be
updated.

Map of variance.
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Space-filling design

Space-filling designs

Aim
Control the variance over the whole space.

Related possible criteria
MC (D) = maxx Var(y(x)|D) (Max criterion)
IC (D) =

∑
x∈E Var(y(x)|D) (Integrated criterion)

Optimization algorithm are time consuming !
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Space-filling design

Alternative criteria for space-filling designs
C (D) = maxx∈E mini=1,...,k d(x , xi ) ↪→ minimax design
C (D) = −mini ,j=1,..,k d(xi , xj) ↪→ maximin design

Example of 7-point space-filling design
maximin design minimax design
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Space-filling design

Other space filling designs
Hypercube latin designs [Stein (1987)], orthogonal arrays [Owen
(1992)].
Low discrepancy sequences (Halton, Hammersley, Sobol, Faure).
Optimal designs (estimation) : Maximum entropy [Currin et al.
(1991)], IMSE [Sacks et al. (1989)].
Packages R : DiceDesign [Franco, Dupuy et al. (2015)], randtoolbox
[Chalabi et al. (2014)].
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Design for targeted area

Design for targeted area

Aim 1 : Exploring area with high values for y(x)

Map of y(x).

We are interested in controlling
the variance over the region excee-
ding a given threshold T

Rexc
T = {x / y(x) > T} .
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Design for targeted area Level line detection

Design for targeted area

Aim 2 : Level line detection

Map of y(x).

We are interested in detecting the
level line for a given threshold T

RLL
T = {x / y(x) = T} .
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Design for targeted area Level line detection

Sequential vs non-sequential design

For a non-sequential design, we choose the k points before the
experiment. We must rely on µ(x) to focus on the area of interest !
For a sequential design, after each point (or a group of points), we
perform measurements. We choose the next point(s) as for the
non-sequential design but based on the updated µ(x) = E(y(x)|yD)
and var(y(x)|D).
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Design for targeted area Level line detection

Criterion for targeted area

Weighted variance
To target a given area , the general principal is to a put more weight on the
point that are possibly in the zone of interest and to control the variance.

c(x ;D) = weight(x)× var(y(x)|D)

Derived criteria for a design D
Max criterion

MC (D) = max
x

weight(x)× var(y(x)|D)

Integrated criterion

IC (D) =
∑
x

weight(x)× var(y(x)|D)
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Example 1 : non-sequential design for high values area

Example 1
Non-sequential design exploring area with high values for y(x)

Target region

Rexc
T = {x / y(x) > T}

Weight

pexc
T (x) = F

(
µx − T

σx

)
(1)

where F is the cumulative density function of a N (0, 1)

Derived criteria
Integrated criterion : IC exc

T (D) =
∑

x p
exc
T (x).Var (y(x)|D) .

max criterion : MC exc
T (D) = maxx pexc

T (x).Var (y(x)|D) .
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Example 1 : non-sequential design for high values area

Interpretation of the weight pexc
T (x) as a probability

pexc
T (x ;D) = P(y(x) > T )

Interpretation of the weight pexc
T (x) as a p-value

Consider :
• y(x) as an unknown fixed quantity ;
• µx ∼ N (y(x),Var(y(x)).

Then, pexc
T (x) appears as the p-value of the test

H0 : “y(x) > T” vs H1 : “y(x) ≤ T”
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Example 1 : non-sequential design for high values area

General method for constructing an optimal computer
design

1 Constructing an initial design D0

2 Improving this design by an exchange algorithm
[Kennard et Stone (1969), Fedorov (1972)].
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Example 1 : non-sequential design for high values area

Step 1 : Construction of the initial D(0) =
(
x
(0)
1 , x

(0)
2 , . . . , x

(0)
n

)
− x

(0)
1 = ArgMaxx∈E

(
cthres
T (x ;D(0)

0 = ∅)
)
−→ D(0)

1 =
{
x
(0)
1

}
;

− x
(0)
2 = ArgMax

x /∈D(0)
1

(
cthres
T (x ;D(0)

1 )
)

−→ D(0)
2 = D(0)

1 ∪
{
x
(0)
2

}
;

− · · · · · · · · ·

− x
(0)
i = ArgMax

x /∈D(0)
i−1

(
cthres
T (x ;D(0)

i−1)
)
−→ D(0)

i = D(0)
i−1 ∪

{
x
(0)
i

}
;

− · · · · · · · · ·

− x
(0)
k = ArgMax

x /∈D(0)
k−1

(
cthres
T (x ;D(0)

k−1)
)
−→ D(0) = D(0)

k−1 ∪
{
x
(0)
k

}
.

where cthres
T (x ;D) = pexc

T (x)× var(y(x)|D) is the individual contribution
of x to the criterion.
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Example 1 : non-sequential design for high values area

Step 2 : Apply the exchange algorithm.

Algorithm 1: Exchange algorithm
Input: initial design D(0), maximal number of iterations M ;
foreach k from 1 to M do

randomly draw x ∈ D(k−1) ;
randomly draw x ′ ∈ E\D(k−1) ;
permute x and x ′ considering D∗ = D(k−1) ∪ {x ′}\{x} ;
if CT (D∗) < CT (D(k−1)) then
D(k) = D∗ ;

else
D(k) = D(k−1) ;

end
end
Output: plan D∗.
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Example 1 : non-sequential design for high values area

Map of the D(0) design

Map of y(x).

Example
Approximately known
elliptical signal.
10-point designs.

Aim
To minimize the estimation error
by targeting the level set defined
by a threshold T .
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Example 1 : non-sequential design for high values area

Map of the D(0) design

Initial map of cthres
T (x).

Example
Approximately known
elliptical signal.
10-point designs.

Aim
To minimize the estimation error
by targeting the level set defined
by a threshold T .
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Example 1 : non-sequential design for high values area

Map of the D(0) design

Map of cthres
T (c) for D(0).

Example
Approximately known
elliptical signal.
10-point designs.

Aim
To minimize the estimation error
by targeting the level set defined
by a threshold T .
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Example 1 : non-sequential design for high values area

Map of the D(0) design

Map of cthres
T (c) for D(10000). Example

Approximately known
elliptical signal.
10-point designs.

Aim
To minimize the estimation error
by targeting the level set defined
by a threshold T .

no accepted exchange (even
with 10000 iter.).
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Example 1 : non-sequential design for high values area

Comparison between D(0) and alternative
designs

Initial designs

D(0) outperforms every other
initial design.

After exchange algorithm
Less than 1% of the resulting
designs are better than D(0).
D(0) remains very relevant ;
its efficiency is about 0.998.
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Example 2 : sequential design for level line detection

Example 2 : sequential design for level-line
detection

Map of y(x).

We are interested in detecting the
level line

RLL
T = {x / y(x) = T} .
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Example 2 : sequential design for level line detection

Target region

RLL
T = {x / y(x) = T}

Weight

pthres
T (x) = 1− 2

∣∣∣∣12 − F

(
µx − T

σx

)∣∣∣∣ . (2)

where F is the cumulative density function of a N (0, 1)

Derived criteria

Integrated criterion : IC thres
T (D) =

∑
x p

thres
T (x).Var (y(x)|D) .

Max criterion : MC thres
T (D) = maxx pthres

T (x).Var (y(x)|D) .
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Example 2 : sequential design for level line detection

Interpretation of the weight pthres
T (x) as a p-value

Consider :
• y(x) as an unknown fixed quantity ;
• µx ∼ N (y(x),Var(y(x)).

Then, pthres
T (x) appears as the p-value of the bilateral test

H0 : “y(x) = T” vs H1 : “y(x) 6= T”

Default choice for µ and starting design

In absence of prior information, we choose at first µ(x) = T so that
each point have the maximum weight = 1
We start with a space-filling design with few points to get information.
Then we construct the next points by applying the algorithm described
in the non-sequential design.
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Example 2 : sequential design for level line detection

Map of y(x)

Goal : Find an optimal sequential design w.r.t. MC thres
T (D)
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Example 2 : sequential design for level line detection A smooth example

Initial surrogate model and the value of c(x)

Map of µ(x) = T Map of cthres(x).
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Example 2 : sequential design for level line detection A smooth example

4-point initial space-filling design

Map of µ(x) Map of cthres(x).
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Example 2 : sequential design for level line detection A smooth example

5-point design

Map of µ(x) Map of cthres(x).
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Example 2 : sequential design for level line detection A smooth example

6-point design

Map of µ(x) Map of cthres(x).
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Example 2 : sequential design for level line detection A smooth example

7-point design

Map of µ(x) Map of cthres(x).
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Example 2 : sequential design for level line detection A smooth example

8-point design

Map of µ(x) Map of cthres(x).
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Example 2 : sequential design for level line detection A smooth example

12-point design

Map of µ(x) Map of cthres(x).
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Example 2 : sequential design for level line detection A smooth example

16-point design

Map of µ(x) Map of cthres(x).
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Example 2 : sequential design for level line detection A smooth example

20-point design

Map of µ(x) Map of cthres(x).
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Example 2 : sequential design for level line detection Alternative weights

Alternative weights and related criteria :
target MSE

Picheny et al. (2010) proposed another weight given by

wσ2ε (x) =
1√

2π (σ2
ε + σ2

x)
exp

[
− (µx − T )2

2 (σ2
ε + σ2

x)

]
.

where σε need to be calibrated.
Note that σε = 0 lead to unbounded weights when σx ≈ 0.

Related criteria
tIMSE =

∑
x wσ2ε (x) var(y(x)|D).

tMMSE = maxx wσ2ε (x) var(y(x)|D)
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Example 2 : sequential design for level line detection Alternative weights

Comparison of weights w.r.t. µ(x)− T for σ(x) = 0.1

-1.0 -0.5 0.0 0.5 1.0
0

1

2

3

4

5

Comparison of weights w.r.t. Μ-T for Σx = 0.1

w HΣe = 0.8L
w HΣe = 0.2L
w HΣe = 0.01L
p
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Example 2 : sequential design for level line detection Alternative weights

Comparison of weights w.r.t. µ(x)− T for σ(x) = 0.01

-0.4 -0.2 0.0 0.2 0.4

0

1

2

3

4

5

Comparison of weights w.r.t. Μ-T for Σx = 0.01

w HΣe = 0.8L

w HΣe = 0.2L

w HΣe = 0.001L

p
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Example 2 : sequential design for level line detection Alternative weights

Comparison of weights w.r.t. σ(x) for µ(x)− T

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

1

2

3

4
Comparison of weights w.r.t. Σx for Μ-T = 0.1

w HΣe = 0.8L
w HΣe = 0.2L
w HΣe = 0.01L
p
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Example 2 : sequential design for level line detection Alternative weights

Interpretation of the weight wσ2ε (x) for σ2
ε = 0

wσ2ε=0(x) = lim
a→0

1
2a

P
(
y(x) ∈ [T − a;T + a]

)
The additional weight σ2

ε is used to stabilize the weight for small values of
σ2(x).
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Example 2 : sequential design for level line detection Alternative weights

Example 1 : Comparison of 8-point designs

Map of µ
and level set
for MC thres.

Map of µ
and level set
for IC thres.

Map of µ
and level set
for tMMSE .

Map of µ
and level set
for tIMSE .
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Example 2 : sequential design for level line detection Alternative weights

Example 1 : Comparison of 20-point designs

Map of µ
and level set
for MC thres.

Map of µ
and level set
for IC thres.

Map of µ
and level set
for tMMSE .

Map of µ
and level set
for tIMSE .
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Example 2 : sequential design for level line detection Alternative weights

Quality score for level line detection

Qdist-score
Average distance between the estimated level line and the true level line
and conversely

Qdist =
(
Qreal

dist + Qest
dist
)
/ 2

Qest
dist is the average distance

between each point of Lest and
the closest point of Lreal ;

Qreal
dist is the average distance

between each point of Lreal and
the closest point of Lest.
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Example 2 : sequential design for level line detection Alternative weights

Qµ-score

Qµ =
(
Qreal
µ + Qest

µ

)
/ 2.

where
Qest
µ =

1
#{Lest}

∑
x∈Lest

|y(x)− T |

and
Qreal
µ =

1
#{Lreal}

∑
x∈Lreal

|ŷ(x)− T |

Qest
µ is the average discrepancy between the true value y(x) and the

threshold T on the estimated level line Lest = {x / ŷ(x) = T}.
Qreal
µ is the average discrepancy between the estimated value ŷ(x) and

the threshold T on the real level line Lreal = {x / y(x) = T}.
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Example 2 : sequential design for level line detection Alternative weights

Evolution of Qµ and Qdist scores from 4 to 20-point designs.

MC thres
T / IC thres

T / tMMSE / tIMSE
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Example 2 : sequential design for level line detection Alternative weights

A more complex example with disconnected
areas
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Example 2 : sequential design for level line detection Alternative weights

Comparison of 6-point designs

Map of µ
and level set
for MC thres.

Map of µ
and level set
for IC thres.

Map of µ
and level set
for tMMSE .

Map of µ
and level set
for tIMSE .
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Example 2 : sequential design for level line detection Alternative weights

Comparison of 10-point designs

Map of µ
and level set
for MC thres.

Map of µ
and level set
for IC thres.

Map of µ
and level set
for tMMSE .

Map of µ
and level set
for tIMSE .
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Example 2 : sequential design for level line detection Alternative weights

Comparison of 12-point designs

Map of µ
and level set
for MC thres.

Map of µ
and level set
for IC thres.

Map of µ
and level set
for tMMSE .

Map of µ
and level set
for tIMSE .
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Example 2 : sequential design for level line detection Alternative weights

Comparison of 20-point designs

Map of µ
and level set
for MC thres.

Map of µ
and level set
for IC thres.

Map of µ
and level set
for tMMSE .

Map of µ
and level set
for tIMSE .

Optimal designs for Gaussian Fields 36 / 39



Conclusion

Evolution of Qµ and Qdist scores from 4 to 20-point designs.

MC thres
T / IC thres

T / tMMSE / tIMSE
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Conclusion

Conclusion and further work

New criteria
C exc : To minimize the estimation error where values exceed a
threshold of interest.
Chigh : To minimize the estimation error where high values are
expected.

Exchange algorithm alternatives
Different exchange methods ;
Simulated annealing optimization ;

−→ No significant gain.
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Conclusion

Conclusions and perspectives

Conclusion

Our max criterion MC thres perform well with few points or when few
knowledge is available.
Both integrated criteria IC thres and tIMSE perform equivalently, with
difficulties to detect new components of the area of interest.
The max criterion tMMSE perform poorly.

Perspective

Use successively MC thres then IC thres.
Use the date to re-estimate the correlation structure.

Optimal designs for Gaussian Fields 39 / 39


	Kriging meta-model
	Issue
	Space-filling design
	Design for targeted area
	Design for targeted area
	Level line detection

	Example 1 : non-sequential design for high values area
	Algorithm for building an optimal design
	Example 2 : sequential design for level line detection
	A smooth example
	Alternative weights

	Conclusion
	Conclusion and further work

