Optimal design for targeted region in Gaussian Fields

Pierre Druilhet

(joint work with Sylvain Coly)

Laboratoire de Mathématiques Blaise Pascal, UMR CNRS 6620 Université Clermont Auvergne

医下环医下

 -17.5

Framework

FRAMEWORK

- Design of Experiments.
- Monitoring framework (environment, health, climate, . . .). Examples : Pollution of a lake, volcanic eruption, etc.
- Approximately known phenomenon.
- Acquisition of spatial data : sensor positions (fixed or mobile).
- −→ More accurate knowledge in "critical" areas.

META-MODEL

Mapping of $y(x)$

- \bullet E is an $n \times n$ grid
- $y(x)$ value of the variable of interest for $x \in E$;
- $y \sim \mathcal{N}(\mu, \Sigma)$ is a Gaussian field;
- \bullet Σ is a known covariance matrix.

A_{IM}

Getting information on $y(x)$ by observing k points : $y(x_1), ..., y(x_n)$

How to choose the points?

- First, specify the goal of the experiment.
- **o** Then define a criterion.
- At last construct the *k*-point design $\mathcal{D}^* = \{x_1^*, ..., x_k^*\}$ that minimizes the criterion.

Updating formula

From a k-point design $\mathcal{D} = \{x_1, ..., x_k\}$, we get the observations $y_{\mathcal{D}} = \{y_{x_1}, ..., y_{x_k}\}.$ For $x \notin \mathcal{D}$, we get an updated mean and variance :

Updated mean

$$
\mu(x) | y_D = \mu(x) + \text{Cov}((y(x); y_D) \cdot {\text{Var}(y_D)}^{-1} \cdot (y_D - \mu_D))
$$

Updated Variance

Var $(y(x)|y_D) = \text{Var}(y(x)) - \text{Cov}(y(x); y_D) \cdot \text{Var}(y_D)\}^{-1} \cdot \text{Cov}(y_D; y(x))$

The updated variance does not depend on the observations y_D , but only on the location of the design points $D!$

(ロト (母) (ヨ) (ヨ)

Example of updated variance

3-point design.

The variance decreases all around these points.

(ロ) (何) (ヨ) (

Example of updated variance

4-point design.

When a new point is added, the covariance matrix can be updated.

K ロ ト K 何 ト K ヨ ト

Space-filling designs

A_{IM}

Control the variance over the whole space.

Related possible criteria

\n- \n
$$
MC(D) = \max_x \text{Var}(y(x)|D)
$$
\n
\n- \n $IC(D) = \sum_{x \in E} \text{Var}(y(x)|D)$ \n
\n- \n (Integrated criterion)\n
\n

Optimization algorithm are time consuming !

Alternative criteria for space-filling designs

•
$$
C(\mathcal{D}) = \max_{x \in E} \min_{i=1,\dots,k} d(x, x_i) \longrightarrow \min_{x \in E} d(x, x_i)
$$

•
$$
C(D) = -\min_{i,j=1,\dots,k} d(x_i, x_j)
$$
 \hookrightarrow maximin design

4 D F

Other space filling designs

- Hypercube latin designs [Stein (1987)], orthogonal arrays [Owen] (1992)].
- Low discrepancy sequences (Halton, Hammersley, Sobol, Faure).
- Optimal designs (estimation) : Maximum entropy [Currin et al. (1991)], IMSE [Sacks et al. (1989)].
- Packages R : DiceDesign [Franco, Dupuy et al. (2015)], randtoolbox [Chalabi et al. (2014)].

Design for targeted area

AIM 1 : EXPLORING AREA WITH HIGH VALUES FOR $y(x)$

We are interested in controlling the variance over the region exceeding a given threshold T

$$
R_T^{exc} = \{x / y(x) > T\}.
$$

4 **D** F

DESIGN FOR TARGETED AREA

AIM 2 : LEVEL LINE DETECTION

We are interested in detecting the level line for a given threshold T

$$
R_T^{LL} = \{x / y(x) = T\}.
$$

4 **D** F

Sequential vs non-sequential design

- \bullet For a non-sequential design, we choose the k points before the experiment. We must rely on $\mu(x)$ to focus on the area of interest!
- For a sequential design, after each point (or a group of points), we perform measurements. We choose the next point(s) as for the non-sequential design but based on the updated $\mu(x) = \mathbb{E}(\nu(x)|\nu_D)$ and var($v(x)|D$).

CRITERION FOR TARGETED AREA

WEIGHTED VARIANCE

To target a given area , the general principal is to a put more weight on the point that are possibly in the zone of interest and to control the variance.

 $c(x; \mathcal{D}) =$ weight $(x) \times$ var $(y(x)|\mathcal{D})$

DERIVED CRITERIA FOR A DESIGN D

• Max criterion

$$
MC(\mathcal{D}) = \max_{x} \text{weight}(x) \times \text{var}(y(x)|\mathcal{D})
$$

• Integrated criterion

$$
IC(\mathcal{D}) = \sum_{x} \mathrm{weight}(x) \times \mathrm{var}(y(x)|\mathcal{D})
$$

EXAMPLE 1

NON-SEQUENTIAL DESIGN EXPLORING AREA WITH HIGH VALUES FOR $v(x)$

TARGET REGION

$$
R_T^{exc} = \{x / y(x) > T\}
$$

WEIGHT

$$
\rho_T^{\text{exc}}(x) = F\left(\frac{\mu_x - T}{\sigma_x}\right) \tag{1}
$$

where F is the cumulative density function of a $\mathcal{N}(0, 1)$

DERIVED CRITERIA

- Integrated criterion : $IC^{\rm exc}_{\mathcal{T}}(\mathcal{D}) = \sum_{x} p^{\rm exc}_{\mathcal{T}}(x) . \text{Var}(y(x)|\mathcal{D})$.
- max criterion : $MC^{\text{exc}}_{\mathcal{T}}(\mathcal{D}) = \max_{x} p^{\text{exc}}_{\mathcal{T}}(x)$. $\text{Var}(y(x)|\mathcal{D})$.

INTERPRETATION OF THE WEIGHT $p_T^{\text{exc}}(x)$ as a probability

$$
p_T^{\rm exc}(x; \mathcal{D}) = \mathbb{P}(y(x) > T)
$$

INTERPRETATION OF THE WEIGHT $p_T^{\text{exc}}(x)$ as a p-value

Consider :

- $y(x)$ as an unknown fixed quantity;
- $\mu_x \sim \mathcal{N}(y(x), \text{Var}(y(x))).$

Then, $p_T^{\rm exc}({\pmb{X}})$ appears as the p-value of the test

$$
\mathcal{H}_0: \text{``}y(x) > T
$$
" vs $\mathcal{H}_1: \text{``}y(x) \leq T$ "

General method for constructing an optimal computer **DESIGN**

- **Constructing an initial design** \mathcal{D}_0
- **2** Improving this design by an exchange algorithm [Kennard et Stone (1969), Fedorov (1972)].

STEP 1: CONSTRUCTION OF THE INITIAL
$$
\mathcal{D}^{(0)} = \left(x_1^{(0)}, x_2^{(0)}, \ldots, x_n^{(0)}\right)
$$

\n
$$
- x_1^{(0)} = \text{ArgMax}_{x \in E} \left(c_T^{\text{thres}}(x; \mathcal{D}_0^{(0)} = \emptyset)\right) \longrightarrow \mathcal{D}_1^{(0)} = \left\{x_1^{(0)}\right\};
$$

\n
$$
- x_2^{(0)} = \text{ArgMax}_{x \notin \mathcal{D}_1^{(0)}} \left(c_T^{\text{thres}}(x; \mathcal{D}_1^{(0)})\right) \longrightarrow \mathcal{D}_2^{(0)} = \mathcal{D}_1^{(0)} \cup \left\{x_2^{(0)}\right\};
$$

\n
$$
- x_i^{(0)} = \text{ArgMax}_{x \notin \mathcal{D}_{i-1}^{(0)}} \left(c_T^{\text{thres}}(x; \mathcal{D}_{i-1}^{(0)})\right) \longrightarrow \mathcal{D}_i^{(0)} = \mathcal{D}_{i-1}^{(0)} \cup \left\{x_i^{(0)}\right\};
$$

\n
$$
- x_k^{(0)} = \text{ArgMax}_{x \notin \mathcal{D}_{k-1}^{(0)}} \left(c_T^{\text{thres}}(x; \mathcal{D}_{k-1}^{(0)})\right) \longrightarrow \mathcal{D}_i^{(0)} = \mathcal{D}_{k-1}^{(0)} \cup \left\{x_k^{(0)}\right\}.
$$

where $\epsilon^\text{thres}_\mathcal{T}(x;\mathcal{D})=\rho^\text{exc}_\mathcal{T}(x)\times \text{var}(y(x)|\mathcal{D})$ is the individual contribution of x to the criterion.

G.

STEP 2 : APPLY THE EXCHANGE ALGORITHM.

Algorithm 1: Exchange algorithm

Input: initial design $\mathcal{D}^{(0)}$, maximal number of iterations M; foreach k from 1 to M do randomly draw $x \in \mathcal{D}^{(k-1)}$; randomly draw $x' \in E\backslash \mathcal{D}^{(k-1)}$; permute x and x' considering $\mathcal{D}^* = \mathcal{D}^{(k-1)} \cup \{x'\} \backslash \{x\}$; if $\mathsf{C}_{\mathcal{T}}(\mathcal{D}^*) < \mathsf{C}_{\mathcal{T}}(\mathcal{D}^{(k-1)})$ then $\mathcal{D}^{(k)}=\mathcal{D}^*$; else ${\cal D}^{(k)} = {\cal D}^{(k-1)}$; end end Output: plan \mathcal{D}^* .

 \overline{AB} \rightarrow \overline{AB} $\$

Map of $y(x)$.

EXAMPLE

- Approximately known elliptical signal.
- 10-point designs.

4 **D** F

Aim

To minimize the estimation error by targeting the level set defined by a threshold T .

Initial map of $c_{\mathcal{T}}^{\text{thres}}(x)$.

EXAMPLE

- Approximately known elliptical signal.
- 10-point designs.

4 **D** F

Aim

To minimize the estimation error by targeting the level set defined by a threshold T .

Map of $c_T^{\text{thres}}(c)$ for $\mathcal{D}^{(0)}$.

EXAMPLE

- Approximately known elliptical signal.
- 10-point designs.

4 **D** F

Aim

To minimize the estimation error by targeting the level set defined by a threshold T .

Map of $c_T^{\text{thres}}(c)$ for $\mathcal{D}^{(10000)}$

EXAMPLE

- **•** Approximately known elliptical signal.
- 10-point designs.

Aim

To minimize the estimation error by targeting the level set defined by a threshold T.

• no accepted exchange (even with 10000 iter.).

COMPARISON BETWEEN $\mathcal{D}^{(0)}$ and alternative **DESIGNS**

INITIAL DESIGNS

 \bullet $\mathcal{D}^{(0)}$ outperforms every other initial design.

AFTER EXCHANGE ALGORITHM

- Less than 1% of the resulting designs are better than $\mathcal{D}^{(0)}$.
- $\mathcal{D}^{(0)}$ remains very relevant ; its efficiency is about 0.998.

EXAMPLE 2 : SEQUENTIAL DESIGN FOR LEVEL-LINE **DETECTION**

Map of $y(x)$. n aan n ann $0⁰$ 08

We are interested in detecting the level line

$$
R_T^{LL} = \{x / y(x) = T\}.
$$

4 **D** F

TARGET REGION

$$
R_T^{LL} = \{x / y(x) = T\}
$$

WEIGHT

$$
\rho_T^{\text{thres}}(x) = 1 - 2 \left| \frac{1}{2} - F\left(\frac{\mu_x - T}{\sigma_x}\right) \right|.
$$
 (2)

where F is the cumulative density function of a $\mathcal{N}(0, 1)$

DERIVED CRITERIA

Integrated criterion : $IC_T^{\rm thres}(\mathcal{D}) = \sum_{x} p_T^{\rm thres}(x) . \text{Var}(y(x)|\mathcal{D})$.

• Max criterion :
$$
MC_T^{\text{thres}}(\mathcal{D}) = \max_x \rho_T^{\text{thres}}(x) \cdot \text{Var}(y(x)|\mathcal{D})
$$
.

→ 何 ト → ヨ ト → ヨ ト

INTERPRETATION OF THE WEIGHT $p_T^{\text{thres}}(x)$ as a p-value

Consider :

- $y(x)$ as an unknown fixed quantity;
- $\mu_x \sim \mathcal{N}(y(x), \text{Var}(y(x))).$

Then, $p_T^{\rm thres}(x)$ appears as the p-value of the bilateral test

$$
\mathcal{H}_0: "y(x) = T" \text{ vs } \mathcal{H}_1: "y(x) \neq T"
$$

DEFAULT CHOICE FOR μ AND STARTING DESIGN

- In absence of prior information, we choose at first $\mu(x) = T$ so that each point have the maximum weight $= 1$
- We start with a space-filling design with few points to get information.
- Then we construct the next points by applying the algorithm described in the non-sequential design.

(ロ) (何) (ヨ) (ヨ)

Goal : Find an optimal sequential design w.r.t. $MC_T^{\rm thres}(\mathcal{D})$

K ロ ▶ | K 伺 ▶ | K ヨ ▶

INITIAL SURROGATE MODEL AND THE VALUE OF $C(X)$

Map of $\mu(x) = T$

Map of $c^{\text{thres}}(x)$.

 $($ ロ) $($ 何) $($ ヨ) $($ ヨ $)$

4-point initial space-filling design

Map of $\mu(x)$

キロメ メ御き メミメ メミメ

Map of $\mu(x)$

Map of $c^{\text{thres}}(x)$.

キロメ メ都 メメ きょうくぼう

Map of $\mu(x)$

Map of $c^{\text{thres}}(x)$.

キロメ メ御き メミメ メミメ

Map of $\mu(x)$

 $($ ロ) $($ $($ $)$ $)$ $($ $)$

Þ

Map of $\mu(x)$

 $($ ロ) $($ $($ $)$ $)$ $($ $)$

Map of $\mu(x)$

Map of $c^{\text{thres}}(x)$.

K ロ ト X 御 ト X 差 ト X

 \Rightarrow Þ

16-POINT DESIGN

Map of $\mu(x)$

Map of $c^{\text{thres}}(x)$.

KOR KOR KERK

Þ

Map of $\mu(x)$

Map of $c^{\text{thres}}(x)$.

KEY KAPY KEY

 \mathcal{A} Þ

Alternative weights and related criteria : TARGET MSE

Picheny et al. (2010) proposed another weight given by

$$
w_{\sigma_{\epsilon}^2}(x) = \frac{1}{\sqrt{2\pi\left(\sigma_{\epsilon}^2 + \sigma_{x}^2\right)}}\exp\left[-\frac{\left(\mu_{x} - T\right)^2}{2\left(\sigma_{\epsilon}^2 + \sigma_{x}^2\right)}\right]
$$

where σ_{ϵ} need to be calibrated.

Note that $\sigma_{\varepsilon} = 0$ lead to unbounded weights when $\sigma_{\varepsilon} \approx 0$.

Related criteria

• tIMSE =
$$
\sum_{x} w_{\sigma_{\epsilon}^2}(x) \operatorname{var}(y(x)|\mathcal{D}).
$$

• tMMSE = max_x
$$
w_{\sigma_{\epsilon}^2}(x) \operatorname{var}(y(x)|D)
$$

.

COMPARISON OF WEIGHTS W.R.T. $\mu(x) - T$ for $\sigma(x) = 0.1$

Comparison of weights **w.r.t.** μ -**T** for σ _{*x*} = 0.1</sub>

э

 $($ ロ) $($ 何) $($ ヨ) $($ ヨ $)$

COMPARISON OF WEIGHTS W.R.T. $\mu(x) - T$ for $\sigma(x) = 0.01$

[Optimal designs for Gaussian Fields](#page-0-0) 28 / 39

э

 $($ ロ) $($ $($ $)$ $)$ $($ $)$

COMPARISON OF WEIGHTS W.R.T. $\sigma(x)$ for $\mu(x) - T$

4 0 8

 $\mathcal{A} \cap \mathcal{B}$ \rightarrow $\mathcal{A} \cap \mathcal{B}$ \rightarrow \mathcal{A}

INTERPRETATION OF THE WEIGHT $w_{\sigma_{\epsilon}^2}(x)$ for $\sigma_{\epsilon}^2 = 0$

$$
w_{\sigma_{\epsilon}^2=0}(x)=\lim_{a\to 0}\,\frac{1}{2a}\,\mathbb{P}\Big(y(x)\in [T-a;T+a]\Big)
$$

The additional weight σ_{ε}^2 is used to stabilize the weight for small values of $\sigma^2(x)$.

э

 $A \oplus A \oplus A \oplus A \oplus A$

Example 1 : Comparison of 8-point designs

EXAMPLE 1 : COMPARISON OF 20-POINT DESIGNS

[Optimal designs for Gaussian Fields](#page-0-0) 31 / 39

Quality score for level line detection

Q_{dist} -SCORE

Average distance between the estimated level line and the true level line and conversely

$$
Q_{\rm dist} = \left(Q_{\rm dist}^{\rm real} + Q_{\rm dist}^{\rm est}\right) \ / \ 2
$$

- $Q_{\rm dist}^{\rm est}$ is the average distance between each point of \mathcal{L}^{est} and the closest point of $\mathcal{L}^{\mathrm{real}}$;
- $Q_{\text{dist}}^{\text{real}}$ is the average distance between each point of $\mathcal{L}^{\mathrm{real}}$ and the closest point of $\mathcal{L}^{\text{est}}.$

 Q_u -SCORE

$$
Q_\mu = \left(Q_\mu^{\rm real} + Q_\mu^{\rm est}\right) / 2.
$$

where

$$
Q^{\text{est}}_{\mu} = \frac{1}{\#\{\mathcal{L}^{\text{est}}\}} \sum_{x \in \mathcal{L}^{\text{est}}} |y(x) - T|
$$

and

$$
Q^{\mathrm{real}}_{\mu} = \frac{1}{\#\{\mathcal{L}^{\mathrm{real}}\}} \sum_{x \in \mathcal{L}^{\mathrm{real}}} |\widehat{y}(x) - \mathcal{T}|
$$

- Q^{est}_{μ} is the average discrepancy between the true value $y(x)$ and the threshold T on the estimated level line $\mathcal{L}^{\text{est}} = \{x \mid \widehat{y}(x) = T\}$.
- Q_{μ}^{real} is the average discrepancy between the estimated value $\hat{y}(x)$ and the threshold T on the real level line $\mathcal{L}^{\text{real}} = \{x \; / \; y(x) = T\}.$

EVOLUTION OF Q_{μ} and Q_{dist} scores from 4 to 20-point designs.

 \blacksquare

A more complex example with disconnected **AREAS**

[Optimal designs for Gaussian Fields](#page-0-0) 35 / 39

Comparison of 6-point designs

Map of μ and level set for MC^{thres} .

Map of μ and level set for IC^{thres} .

Map of μ and level set for tMMSE.

Map of μ and level set for tIMSE.

> 4 D F 4 同

Comparison of 10-point designs

Comparison of 12-point designs

Comparison of 20-point designs

[Optimal designs for Gaussian Fields](#page-0-0) 36 / 39

EVOLUTION OF Q_{μ} and Q_{dist} scores from 4 to 20-point designs.

 \blacksquare

Conclusion and further work

NEW CRITERIA

- C^{exc} : To minimize the estimation error where values exceed a threshold of interest.
- C^{high} : To minimize the estimation error where high values are expected.

- Different exchange methods;
- Simulated annealing optimization;
-

 $\langle \langle \langle \langle \langle \rangle \rangle \rangle \rangle$ and $\langle \langle \rangle \rangle$ and $\langle \rangle$ and $\langle \rangle$

Conclusion and further work

NEW CRITERIA

- C^{exc} : To minimize the estimation error where values exceed a threshold of interest.
- C^{high} : To minimize the estimation error where high values are expected.

Exchange algorithm alternatives

- Different exchange methods;
- Simulated annealing optimization;
- \longrightarrow No significant gain.

Conclusions and perspectives

CONCLUSION

- \bullet Our max criterion MC^{thres} perform well with few points or when few knowledge is available.
- \bullet Both integrated criteria IC^{thres} and tIMSE perform equivalently, with difficulties to detect new components of the area of interest.
- The max criterion tMMSE perform poorly.

PERSPECTIVE

- Use successively MC^{thres} then IC^{thres} .
- Use the date to re-estimate the correlation structure.