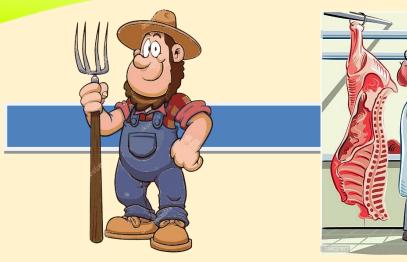


Etude des interactions et recherche de compromis entre performances zootechniques des bovins et qualités de leur viande

Doctorant: Alexandre Conanec

Directeurs de thèse: Marie-Pierre Ellies-Oury et Jérôme Saracco

Introduction



ère Viande Bo

Performances zootechniques

Qualité des carcasses

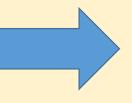
Qualité nutritionnelle

Qualité sensorielle

4 intérêts de la filière

Antagonistes

Corrélés positivement **Relations?** Non corrélés



Recherche d'un compromis

Elaboration d'un cahier des charges

Matériels: Expérimentation Lipivimus

Ration de base: Paille + concentré

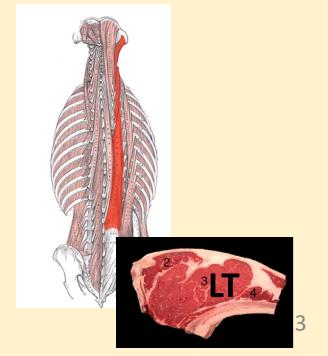
Objectifs:

Note d'Etat Corporel: [3; 3.5]

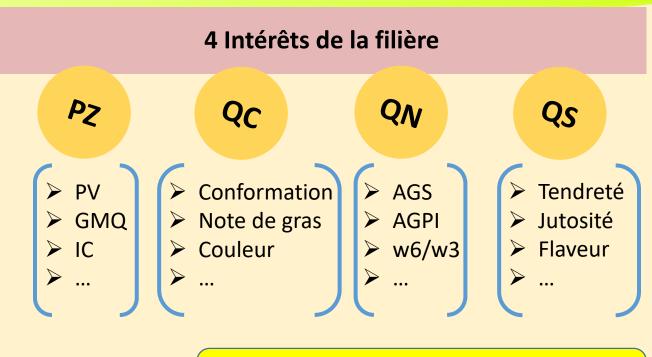
Poids: 720 kg

Données collectées:

Animaux	Performances zootechnique	Qualité des carcasses	Qualité Nutritionnelle	Qualité Sensorielle
1	9 indicateurs :	21 indicateurs :	39 indicateurs :	12 indicateurs :
	GMQ, poids vif, IC,	conformation, note de	teneur en lipides,	tendreté, jutosité,
: 30		gras,	C16:0, C18:3 n-3,	flaveur,



Méthodologie en 3 étapes



Sélectionner un pool d'indicateurs pertinents

Réduire la redondance des indicateurs et simplifier l'interprétation

Méthodologie en 3 étapes

4 Intérêts de la filière

PZ

QC

QN

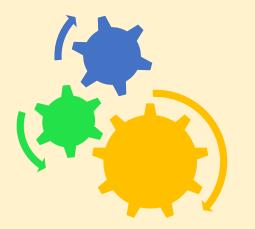
Qs

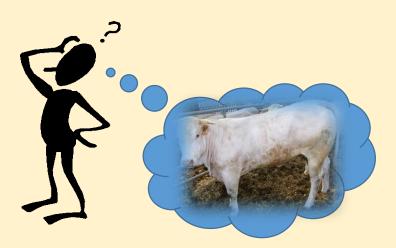
Sélections d'un pool d'indicateurs pertinents

Réduire la redondance et simplifier l'interprétation

Etablir des relations entre les indicateurs de PZ, QC, QN et QS

Analyser l'influence et le comportement des indicateurs





Méthodologie en 3 étapes

PZ

QC

QN

Qs

Sélections d'un pool d'indicateurs pertinents

Réduire la redondance des indicateurs et simplifier l'interprétation

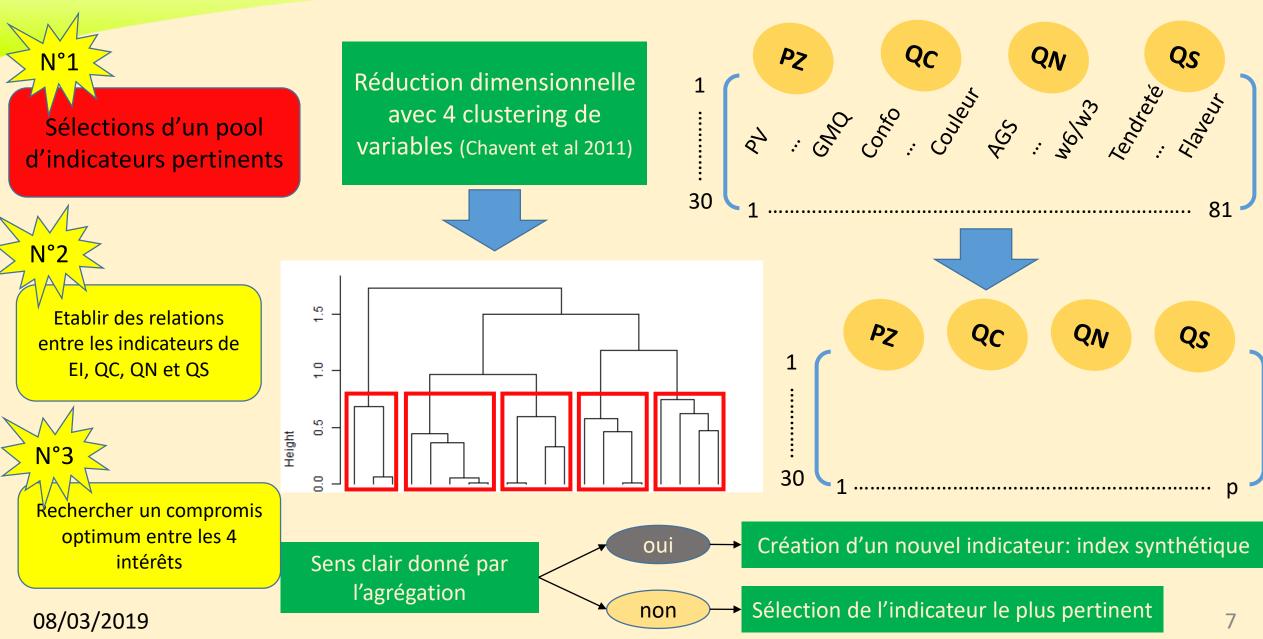
Etablir des relations entre les indicateurs de EI, QC, QN et QS

Analyser l'influence et le comportement des indicateurs

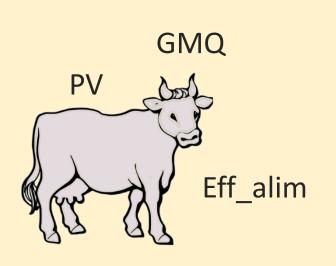
Rechercher un compromis optimum entre les 4 intérêts

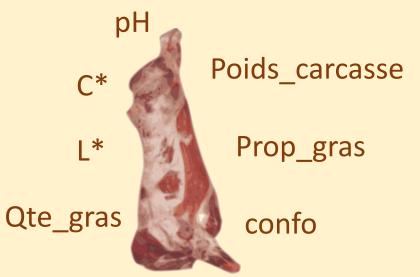
Gérer les attentes des différents cahiers des charges

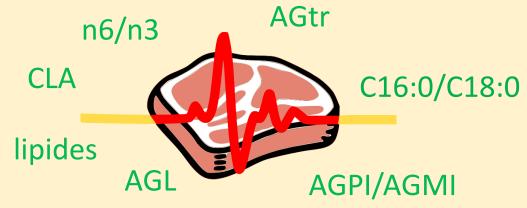
Réduction dimensionnelle par 4 clustering de variables

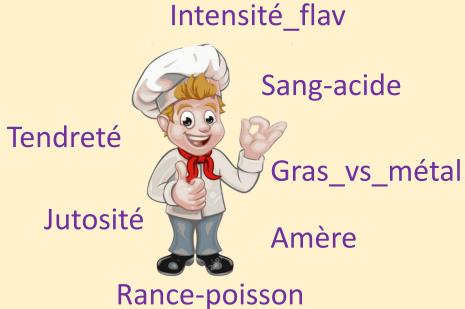


Pool d'indicateurs sélectionnés pour évaluer les 4 intérets

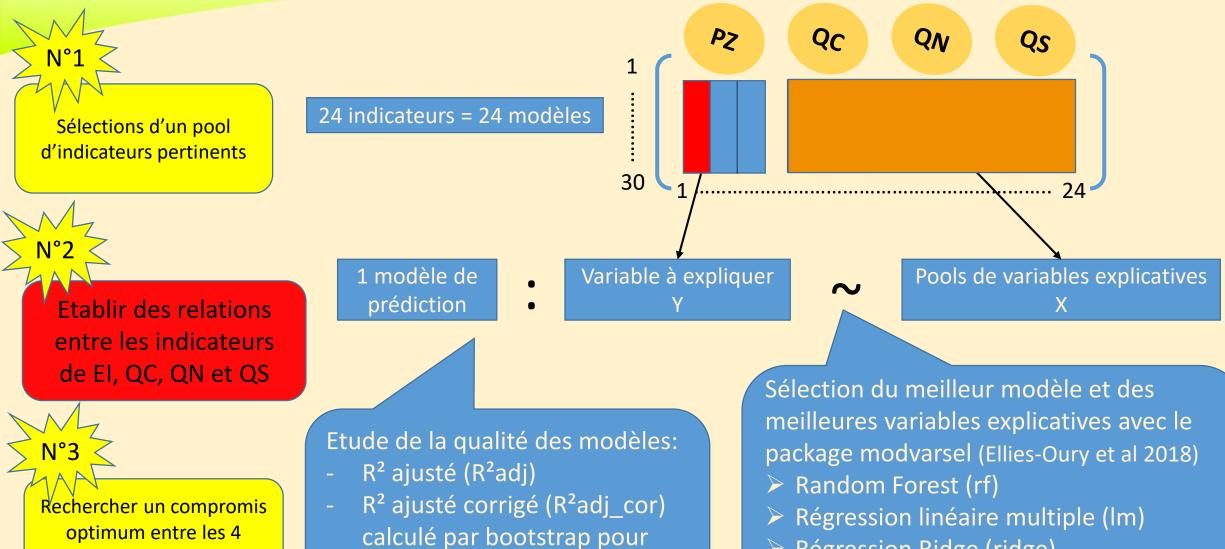








Construction et évaluation des modèles de prédiction



évaluer la performance réelle

du modèle (Harrel et al. 1996)

08/03/2019

intérêts

Régression Ridge (ridge)

Sliced inversed regression (sir)

Partial least square regression (plsr)

Correction des indicateurs apparent par bootstrap: exemple du R²

Soit:

 $\vec{y} = n$ valeurs observées de la variable à expliquer $\overrightarrow{y_b} = b^{i\`{e}me}$ sous échantillon de \vec{y}

 $model_b = model (type \ random \ forest)$

entrainé sur le sous – échantillon b

B: le nombre de répétitions du bootstap

Posons:

$$R^{2}_{b_{boot}} = R^{2}(y = \overrightarrow{y_{b}}, \hat{y} = predict(model_{b}, \overrightarrow{y_{b}}))$$

$$R^{2}_{b_{orig}} = R^{2}(y = \overrightarrow{y}, \hat{y} = predict(model_{b}, \overrightarrow{y}))$$
08/03/2019

Définissons alors l'Optimisme O tel que :

$$O = \frac{1}{B} \sum_{b=1}^{B} (R^2_{b_{boot}} - R^2_{b_{orig}})$$

Corrigeons enfin le R² apparent :

$$R^2_{cor} = R^2_{app} - O$$

Qualité des modèles de prédiction

R²adj

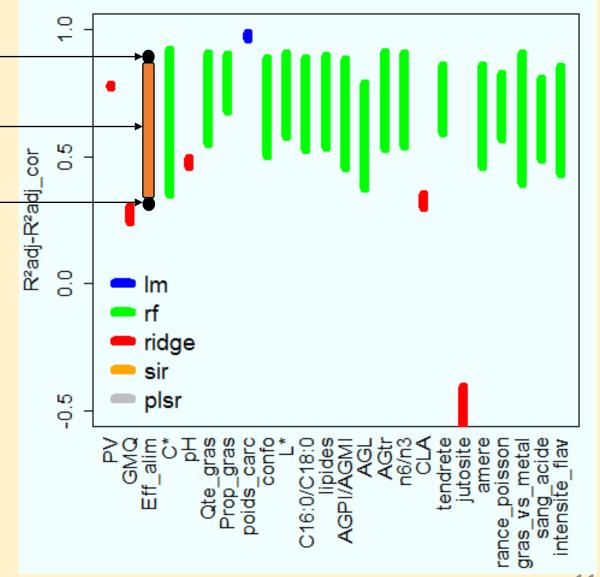
R²adj_cor

• Prédiction acceptable pour prédiction acceptable pr

• Une majorité de random forest ; sir et plsr non sélectionnés

 Un sur-apprentissage important des modèles random forest

Im=régression linéaire multiple; rf=random forest; sir=sliced inversed regression; plsr= partial least square regression 08/03/2019



2 méthodes d'évaluation complémentaires de la sensibilité des modèles

Sélections d'un pool d'indicateurs pertinents

N°2

Etablir des relations entre les indicateurs de EI, QC, QN et QS

N°3

Rechercher un compromis optimum entre les 4 intérêts

08/03/2019

Calcul d'indices de sensibilité S_i selon la décomposition de la variance de Sobol (Sobol 2001)

Importance du

régresseur

k régresseurs

k indices S_i , $S_i \in [0; 1]$,

$$\sum_{i=1}^{k} S_i = 1$$

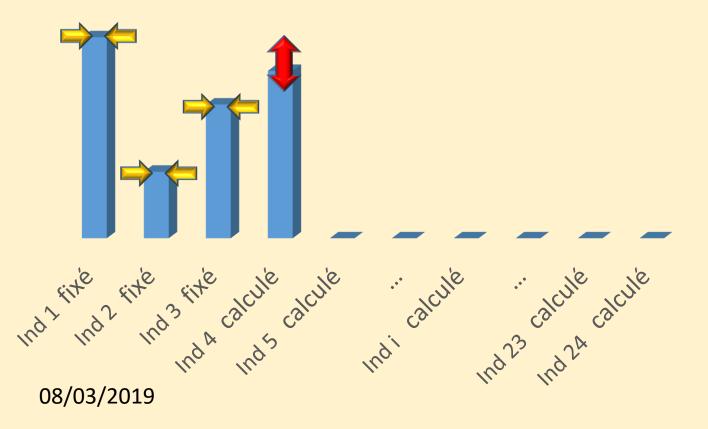
Application graphique réalisée sur Shiny

onanec.shinyapps.io/cowperf

Complète les S_i et permet d'appréhender les modèles « boites noires »

Première prédiction

PV	GMQ	Eff_alim	C*	Ind 2	•••	Ind i	 Ind23	Ind24
3	1	2	ypred	0		0	 0	0



```
Load(Model) #24, 1 pr chaque ind \overline{Ind} #valeur fixee + des 0 (indiv moyen)

Valeur_fixe <- 1:3

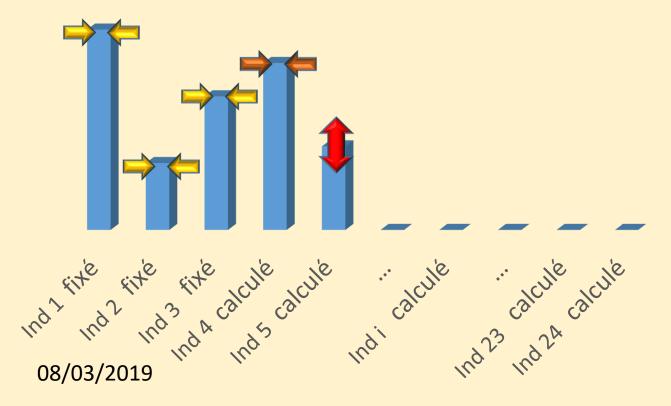
For (i in 1:length(\overline{Ind})

If (! i %in% Valeur_fixee)

\overline{Ind} [i] <- predict(Model[i], \overline{Ind})
```

PV	GMQ	Eff_alim	C*	Ind 2		Ind i	 Ind23	Ind24
3	1	2	ypred4	0		0	 0	0
3	1	2	ypred4	ypred5	•••	0	 0	0

Deuxième prédiction



```
Load(Model) #24, 1 pr chaque ind \overrightarrow{Ind} #valeur fixee + des 0 (indiv moyen) Valeur_fixe <- 1:3

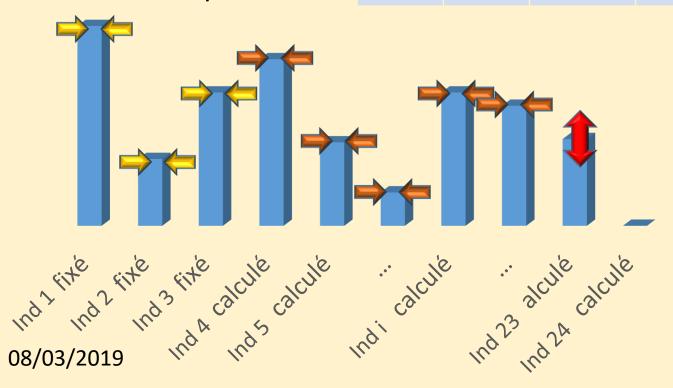
For (i in 1:length(\overrightarrow{Ind})

If (! i %in% Valeur_fixee)

\overrightarrow{Ind} [i] <- predict(Model[i], \overrightarrow{Ind})
```

PV	GMQ	Eff_alim	C*	Ind 2	 Ind i		Ind23	Ind24
3	1	2	ypred4	0	 0	•••	0	0
3	1	2	ypred4	ypred5	 0	•••	0	0
3	1	2	ypred4	ypred5	 ypredi		ypred20	0

Av dernière prédiction



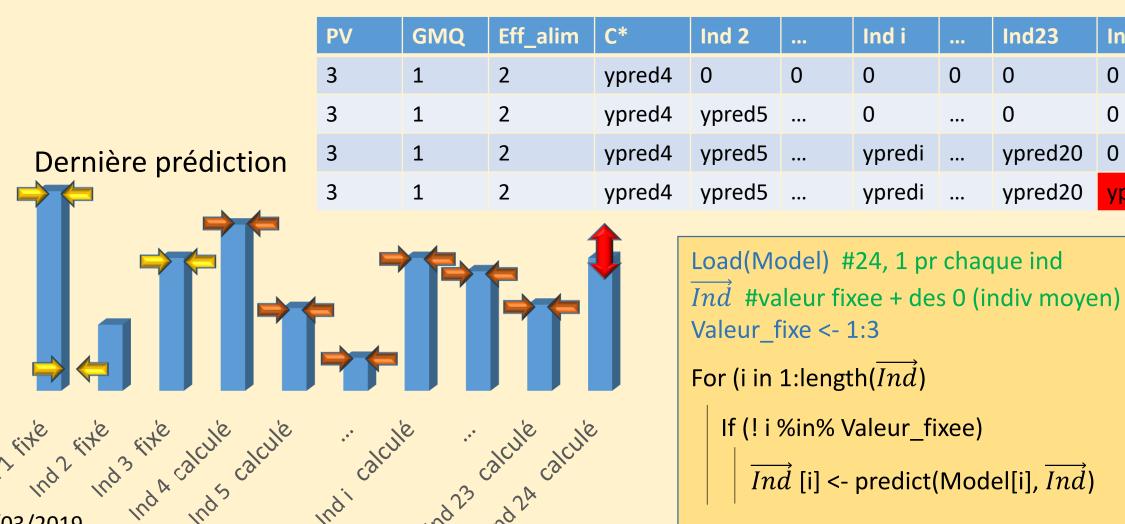
```
Load(Model) #24, 1 pr chaque ind \overrightarrow{Ind} #valeur fixee + des 0 (indiv moyen)

Valeur_fixe <- 1:3

For (i in 1:length(\overrightarrow{Ind})

If (! i %in% Valeur_fixee)

\overrightarrow{Ind} [i] <- predict(Model[i], \overrightarrow{Ind})
```



 \overrightarrow{Ind} [i] <- predict(Model[i], \overrightarrow{Ind}) 16

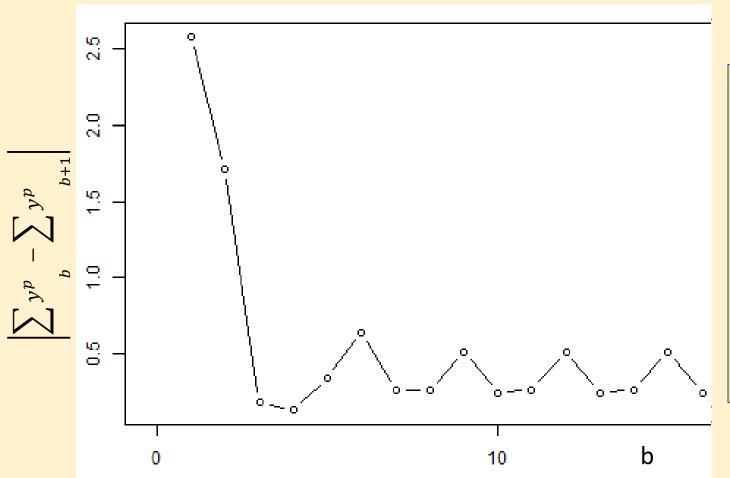
Ind24

ypred21

0

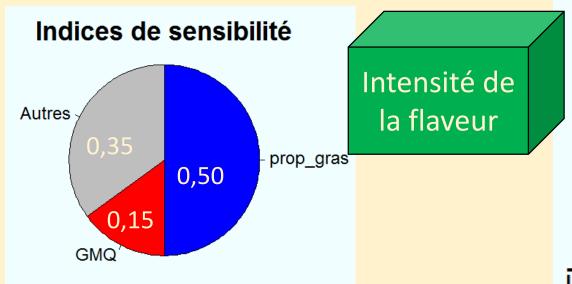
0

0

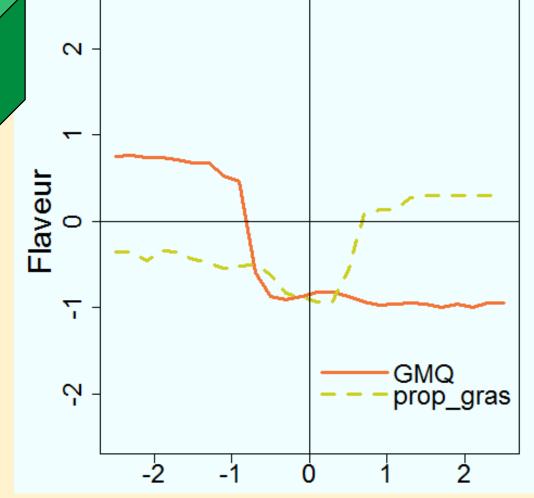


```
 \begin{array}{c|c} \mathsf{Model} \\ \hline Ind_0 \\ \mathsf{Valeur\_fixe} <- 1:3 \\ \hline \mathsf{For} \ (\mathsf{b} \ \mathsf{in} \ 1:10) \\ \hline & \mathsf{For} \ (\mathsf{i} \ \mathsf{in} \ 1:\mathsf{length} (\overline{Ind}_0) \\ \hline & \mathsf{lf} \ (! \ \mathsf{i} \ \% \mathsf{in} \% \ \mathsf{Valeur\_fixee}) \\ \hline & Ind_0[\mathsf{i}] <- \ \mathsf{predict} (\mathsf{Model}[\mathsf{i}], \ \overline{Ind}_0) \\ \hline \end{array}
```

Les viandes marbrées et persillées favorisent l'intensité de la flaveur...

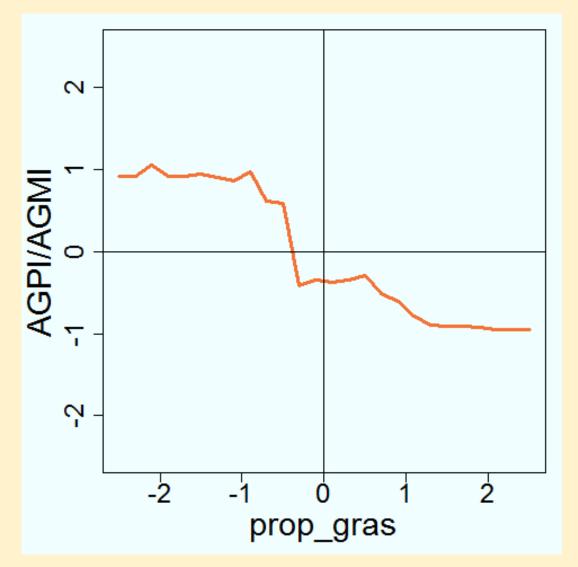


- Le lien gras-flaveur en accord avec la littérature (Thompson et al. 2004)
- Le lien avec le GMQ est, lui, plus discuté (Pethick et al. 2004; Park et al. 2018; Robelin et al. 1986)



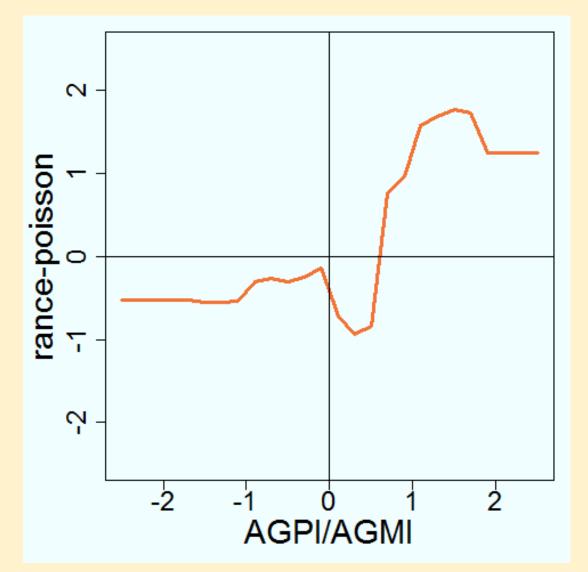
...mais diminuent la proportion d'AGPI...

- Résultat en accord avec la littérature (Warren et al. 2008)
- Proportion de gras élevée
 => synthèse de novo
- Bénéfice santé réduit



...qui est à l'origine de flaveurs indésirables

• En lien avec phénomène d'oxydation des doubles liaisons (Wood et al. 2008)



Discussion sur la linéarité des relations

- Les relations entre les variables observées ne sont pas linéaires dans la majorité
- Les modèles concernés par ces variations sont de type random forest
- L'hypothèse est donc que le sur-apprentissage est la cause de cette non linéarité
- Les résultats sont donc à prendre avec précaution
- De nouvelles observations devraient permettre de valider et/ou améliorer notre connaissance des différents liens étudiés

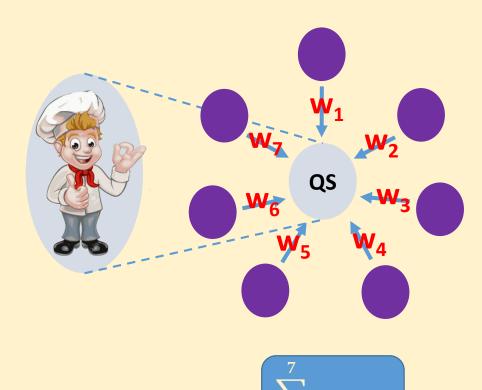
Agrégation linéaire des indicateurs pour évaluer chaque intérêt

Sélections d'un pool d'indicateurs pertinents

Etablir des relations entre les indicateurs de EI, QC, QN et QS

Rechercher un compromis optimum entre les 4 intérêts

Indicateurs	Coefficients
C16:0/C18:0	-0,15
lipide_teneur	-0,15
AGPI/AGMI	0,25
AGL	0,05
AG trans	0,05
n6/n3 EXPER	-0,25
CLA	0,1
tendrete	0,425
jutosite	0,15
amere	-0,025
rance_poisson	-0,125
gras_vs_metal	-0,05
sang_acide	-0,05
intense_flav	0,175



Meat Standard Australia (Polkinghorne et al. 2008)

N°2

Etablir des relations entre les indicateurs de EI, QC, QN et QS

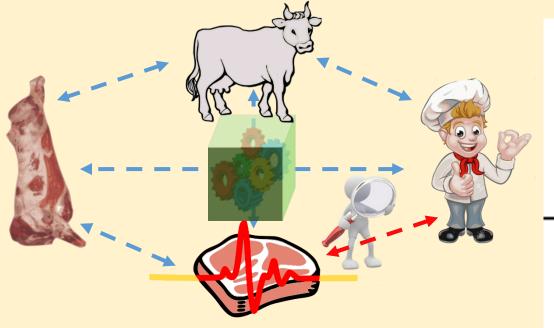
Sélections d'un pool

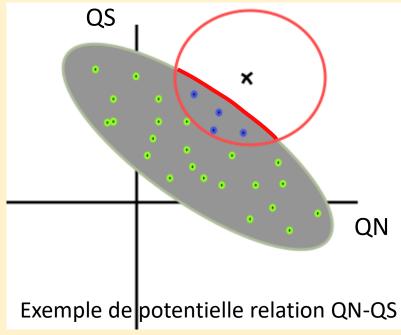
d'indicateurs pertinents

N°3

Rechercher un compromis optimum entre les 4 intérêts

Choix méthodologique de résolution du problème d'optimisation





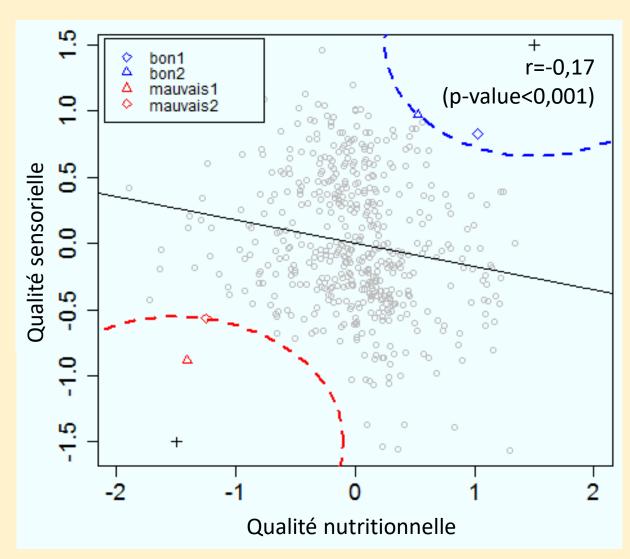
- Nombre d'individus réels faible pour résoudre le problème d'optimisation ...
- ... donc génération d'individus virtuels (n=500) à partir des modèles

Qualités sensorielle et nutritionnelle faiblement

négativement corrélées

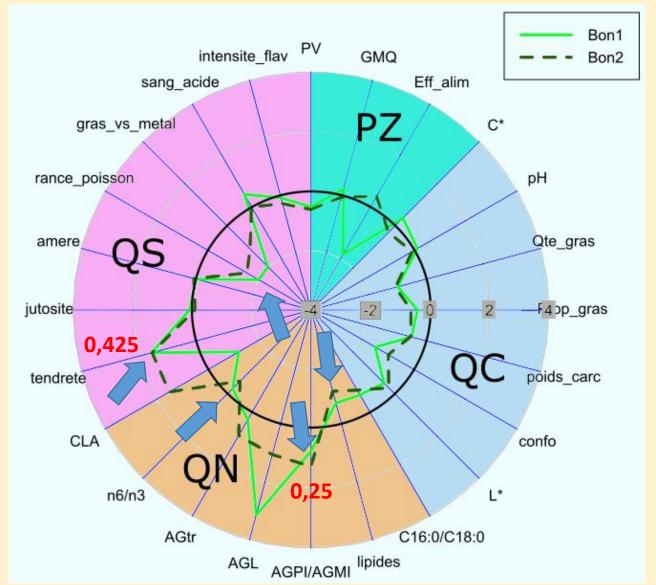
 Peu d'études avec lesquelles comparer ce résultat

- Ellies-Oury et al. (2016) concluent que QN et QS sont indépendants
- On peut produire des viandes saines et savoureuses



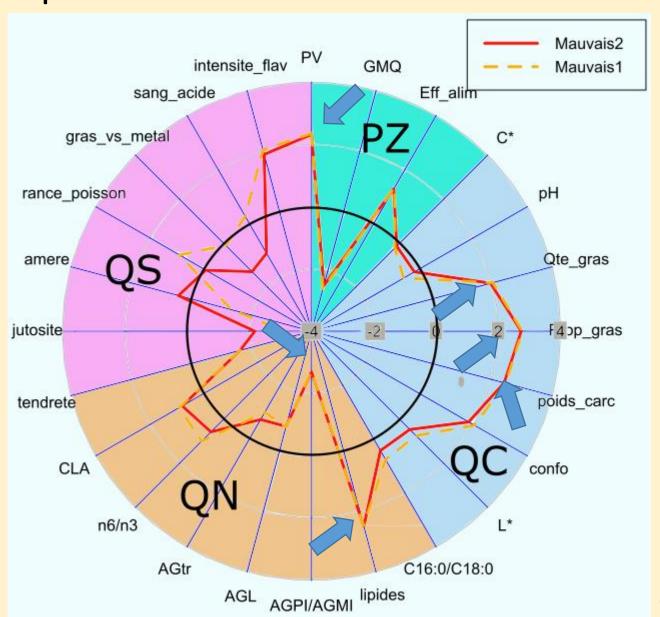
Les deux meilleurs profils

- Viande tendre sans flaveur indésirable
- Viande peu grasse, avec des rapports AGPI/AGMI et n6/n3 favorables
- Influence des coefficients d'importance attribués à chaque indicateur



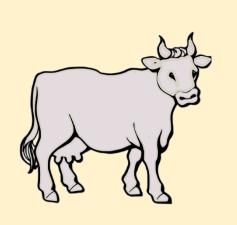
Les deux plus mauvais profils

- Viande grasse avec peu d'AGPI en proportion
- Carcasses et animaux plus lourds



Conclusions et perspectives de l'étude

Un pool de 24 indicateurs a été sélectionné pour évaluer les 4 intérêts



Croissance

Efficience alimentaire

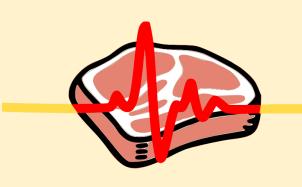
Impact environnemental

Bien-être

Conformation de carcasse

Couleur

Répartition du gras



Profil en AG

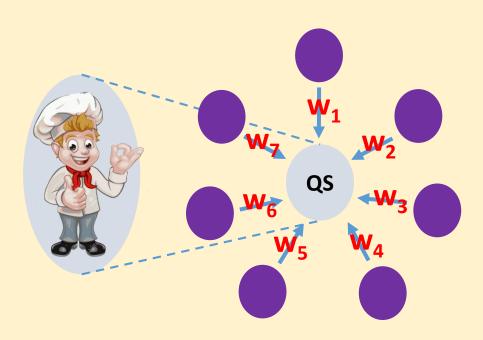
Fer

Protéines

Antioxydants

Descripteurs subjectifs de qualité

Méthodologie d'agrégation des indicateurs peut être améliorée



• Fixation plus robuste des **w**_i

Méta-analyse

Enquêtes

surclassement

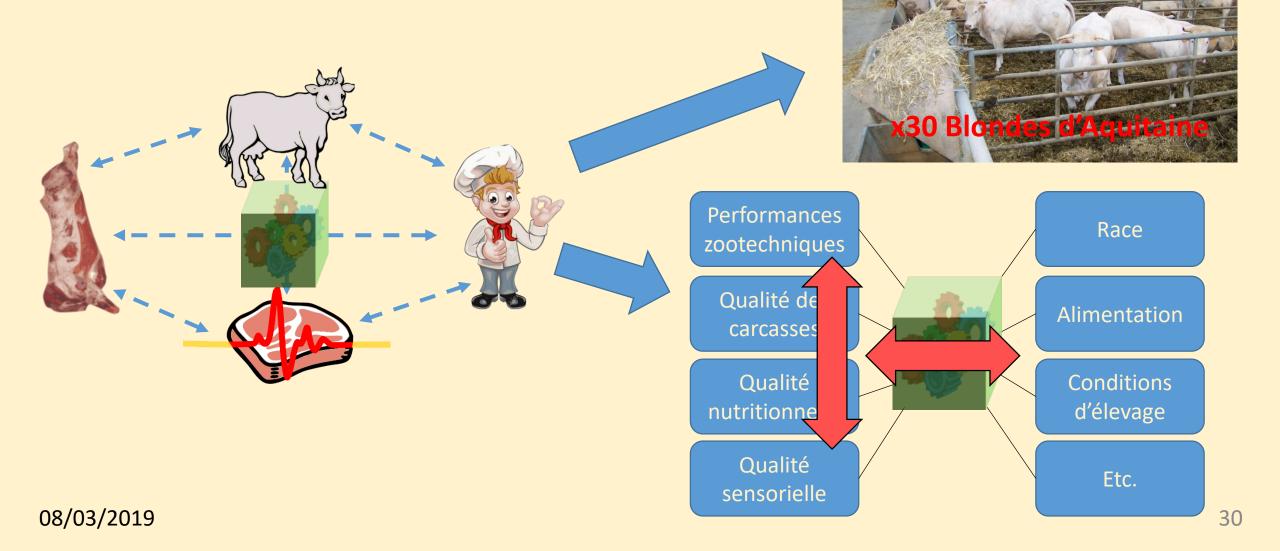
Combinaison de plusieurs notations

Réseaux bayesiens

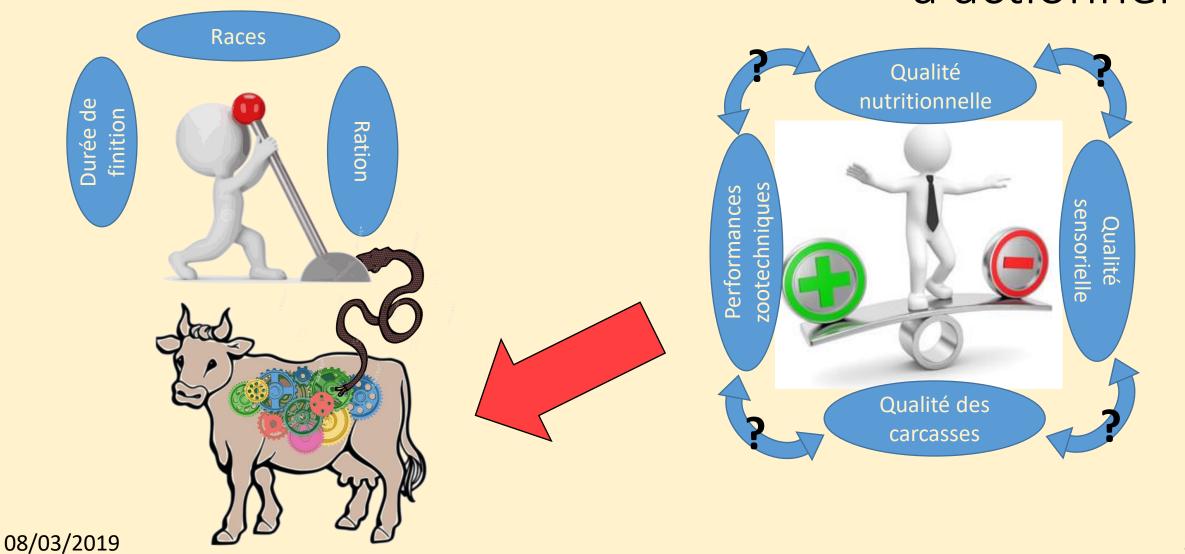
Prise en compte plus stricte des très mauvaises performances
 Méthodes de

Etude des liens entre qualités et performances

spécifique à une expérimentation



Etude ne permettant pas de conclure sur leviers à actionner



Merci de votre attention