

La caractérisation des sprays par granulométrie/vélocimétrie : un outil d'évaluation des buses et des interactions entre buses et produits

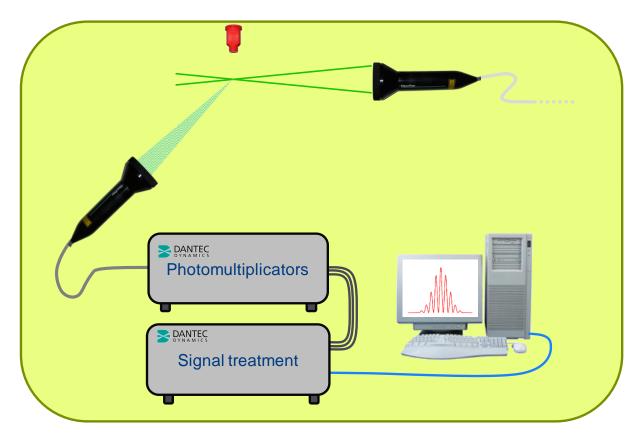
- Aide à la conception et à la caractérisation de buses agricoles et industrielles
- Propriétés des adjuvants et coformulants de spécialités phytosanitaires

(photo 1 : crédit Lookatscience®)

Crédit photo Lookatscience®

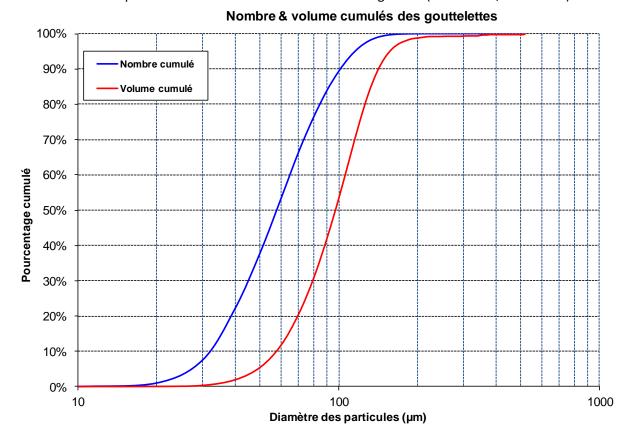
Objectif : caractériser et cartographier la taille et la vitesse des gouttes des sprays

L'équipe de la plateforme de recherche technologique ReducPol développe et met en œuvre des méthodes de caractérisation de la taille et de la vitesse des gouttes pour :


- Caractériser en taille et vitesse la population de gouttes de différentes technologies de buses agricoles et industrielles (peinture, refroidissement, irrigation, etc.)
- Evaluer les technologies de buses en vue de leur inscription au Journal Officiel du Ministère de l'Agriculture au titre de moyens officiels pour limiter la dérive (Arrêté du 12 Septembre 2006)
- Evaluer l'effet d'adjuvants ou de co-formulants en condition d'application avec les buses agricoles.

Matériels expérimentaux :

1 banc de mesure laser PDA Dantec®-Coherent® couplé à un charriot robotisé 3D. (photo 2 : crédit Irstea®)


Principe de la mesure :

Un faisceau laser (450 et/ou 528 nm) est généré par un tube laser de puissance, puis divisé en 2 (1 faisceau voit sa fréquence augmentée par une cellule de Bragg) et propagé par une optique émettrice. Le point d'intersection des faisceaux correspond au point de mesure dans lequel toutes les gouttes traversantes sont comptabilisées en taille et vitesse.

Expression des résultats :

1. Différentes expressions de la distribution de la taille des gouttes (en nombre, en volume)

2. Cartographie des VMD

X/Y	-240	-210	-180	-150	-120	-90	-60	-30	0	30	60	90	120	150	180	210	240
-240	31	13	32	13		124	141	137	141	135	136	147	126	21	20	33	24
-210	7	34	14	107	145	131	137	128	128	131	131	133	138	135	133	100	17
-180	26	42	120	133	134	126	113	103	99	101	106	114	125	126	131	122	17
-150	25	18	136	130	126	101	92	82	78	85	84	93	106	118	127	126	119
-120	20	145	128	120	101	87	77	69	62	68	66	79	91	106	118	129	158
-90	24	142	127	108	91	77	66	58	48	55	60	70	83	95	110	124	131
-60	136	129	124	96	82	68	57	44	35	38	47	58	72	86	101	120	128
-30	132	132	119	92	77	60	46	35	34	39	49	59	75	85	97	113	127
0	124	129	112	90	76	59	43	43	38	51	59	67	71	85	98	112	123
30	130	129	114	94	76	65	66	56	53	60	65	72	79	90	100	114	118
60	127	128	118	91	78	73	70	65	67	72	75	82	82	92	104	118	124
90	175	134	126	103	95	89	79	68	70	80	80	82	87	98	110	118	118
120	122	119	123	109	100	95	88	89	81	87	90	94	91	104	117	137	127
150	155	126	131	122	113	103	97	99	93	94	96	106	103	112	113	126	129
180			136	122	106	113	109	110	106	107	99	117	109	129	124		
210		129				118	117	132	113	110	125	120					
240					125	120	121			126				128			

(Axes : distance en mm)

- Bilan global et indicateurs granulométriques

ATR 80 Blanche									
Pression (bar)	20	30							
Nombre de particules mesurées	274 128	421 436							
Diamètre arithmétique (µm)	50	45							
Diamètre Volumétrique (µm)	63	57							
Diamètre de Sauter (µm)	79	71							
Coefficient d'homogénéité	81,5%	81,5%							
NMD (μm)	44	40							
D10 (µm)	51	46							
D50 (VMD) (μm)	90	81							
D90 (μm)	136	123							
Span relatif	0,94	0,95							
VMD / NMD	2,07	2,06							
Nombre de gouttes <100 µm (%)	94,3%	96,8%							
Volume des gouttes <100 µm (%)	61,1%	72,5%							

Applications:

- Evaluation de buses agricoles et industrielles
- Evaluation de l'effet d'adjuvants ou co-formulants de spécialités phytosanitaires (pouvoir anti dérive, effet combiné buse-produit)
- Caractérisation des ventilations d'appareils à assistance d'air (par ensemencement de particules)

Partenariats et références :

Albuztec, Automatworld, ...

Rhodia, Agridyne, FMC, Bayer CropScience, ARYSTA, Agrisynergie, Dow Agri, Monsanto, Novance, ...

Contacts:

Jean-Paul DOUZALS, Responsable essais Plateforme ReducPol – tel 04 67 16 65 03 – jean-paul.douzals@irstea.fr

Bernadette RUELLE, Directrice adjointe UMR ITAP – tel 04 67 16 64 11 – bernadette.ruelle@irstea.fr