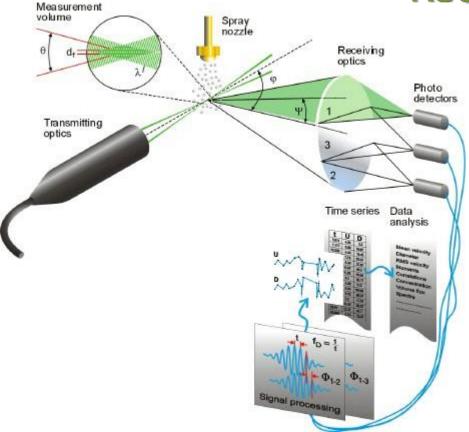
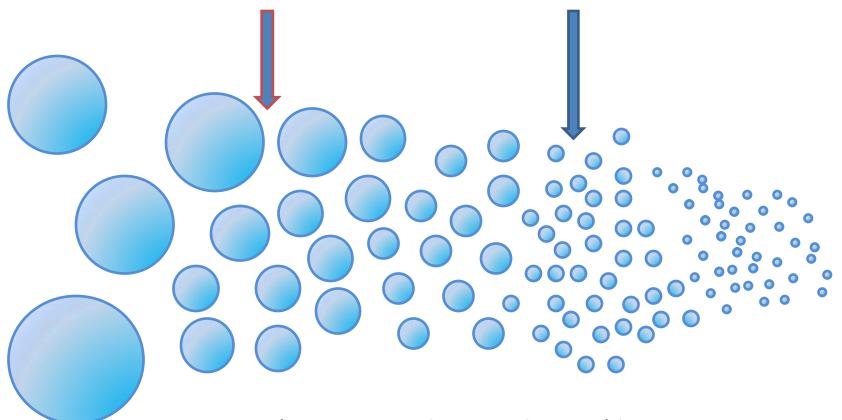


Principes et résultats de la granulométrie laser



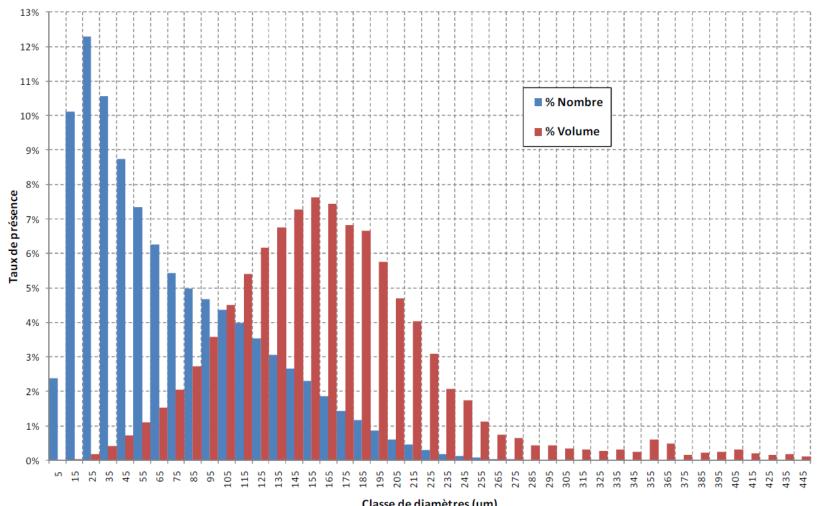
Cas n°1: PDPA Dantec


2 faisceaux lasers sont générés sont émis par une optique (transmetteur) et convergent en un point. Selon le mode optique utilisé (réflexion, réfraction), toutes les gouttes passant par ce point sont évaluées en taille. Le déphasage angulaire entre les 3 photodétecteurs du récepteur permet contrôler l'information de taille des gouttes selon 3 angles différents. La vitesse des particules est donnée par effet Doppler grâce à un déphasage des longueurs d'ondes entre les deux faisceaux. Les gouttes non sphériques sont rejetées. Un banc automatisé permet de déplacer la buse et de scanner un endroit différent du spray. Ces mesures permettent de construire une cartographie des tailles de gouttes

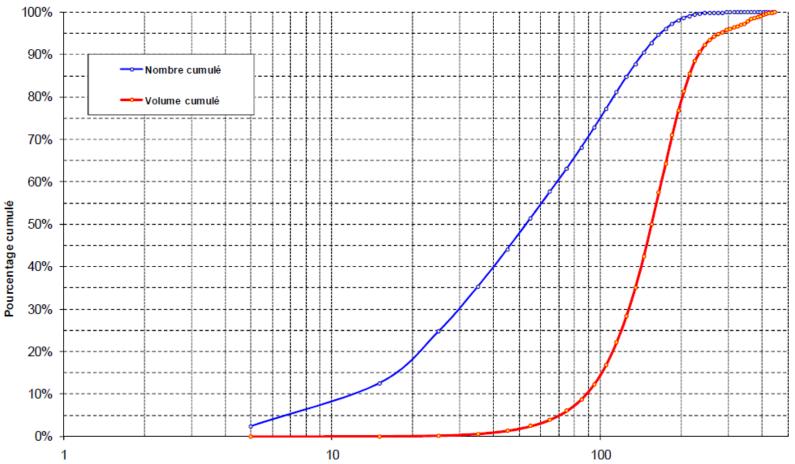
Sur une population de 100 gouttes classées par diamètre

Valeur médiane en VOLUME : VMD Valeur médiane en NOMBRE : NMD

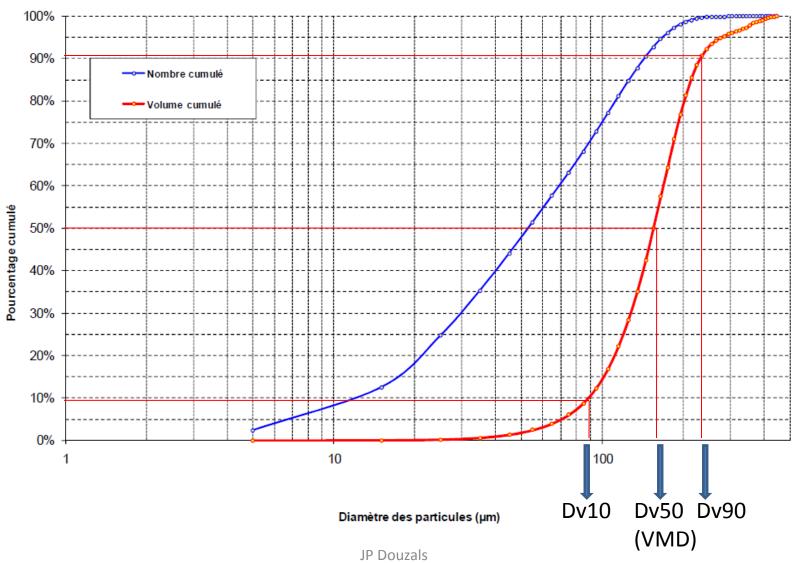
VMD : Diamètre correspondant au volume médian


NMD : Diamètre correspondant au nombre médian

Comment représenter une distribution de tailles de gouttes ?


- en nombre
- en volume

ReducPol - Comment représenter une distribution de tailles de gouttes ? en nombre cumulé en volume cumulé



Diamètre des particules (µm)

Les résultats attendus : courbes cumulées

5.1. FORMULES DE CALCUL POUR LA GRANULOMETRIE

 n_i le nombre de gouttelettes dans la classe de diamètre i

On note : d, le diamètre moyen de la classe de diamètre i

Diamètre arithmétique:

$$D_a = \frac{\sum_{i=1}^{n} n_i \cdot d_i}{\sum_{i=1}^{n} n_i}$$

Diamètre de Sauter :

$$D_{32} = \frac{\sum_{i=1}^{n} n_i . d_i^3}{\sum_{i=1}^{n} n_i . d_i^2}$$

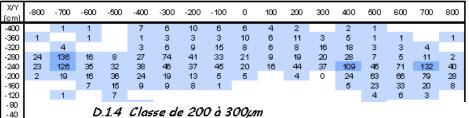
Diamètre volumétrique :

$$D_{v} = \sqrt[3]{\frac{\sum_{i=1}^{n} n_{i}.d_{i}^{3}}{\sum_{i=1}^{n} n_{i}}}$$

Coefficient d'homogénéité (H) :

$$H = \frac{\left(\sum_{i=1}^{n} n_{i}.d_{i}^{2}\right)^{2}}{\sum_{i=1}^{n} n_{i}.d_{i}.\sum_{i=1}^{n} n_{i}.d_{i}^{3}} \times 100$$

Number Median Diameter (NMD): Médiane numérique de la population (séparation en 2 groupes représentant le même nombre de gouttelettes)


Volume Median Diameter (VMD ou D₅₀) : Médiane volumétrique de la population (séparation en 2 groupes représentant le même volume de pulvérisation)

D₁₀: Valeur du diamètre pour lequel les gouttes de taille inférieure représentent 10 % du volume total pulvérisé.

D₉₀: Valeur du diamètre pour lequel les gouttes de taille inférieure représentent 90 % du volume total pulvérisé.

D.1.5 Classe de 300 à 400µm

193

cartographie granulométrique

-200 -80 -40 D.1.3 Classe de 100 à 200cm

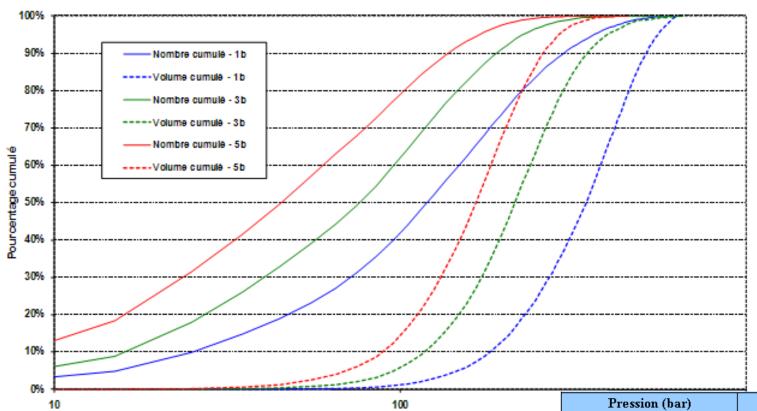
Ex: Nbre de gouttes par classes de taille

-400	10	22	134	174	
-380	1	8	49	133	
-320	4	25	106	153	
-280	16	110	254	384	
-240	41	242	678	864	
-200	21	239	1168	2096	
-160	7	58	577	1302	
-120	1	9	58	1034	
-80		7	38	182	
-40			9	76	
0		4	8	74	
40	3	24	16	179	
80	32	97	144	579	
120	100	181	324	1099	
160	118	470	1459	1492	ı
200	144	497	1646	1649	ı
240	190	479	1263	968	ı
280	76	255	567	738	
320	46	116	193	288	
360	11	40	131	145	
400	15	11	25	35	

-800 -700 -600 -500 -400

D.1.2 Classe de 0 à 100µm

-200


-100

X/Y (cm)	-800	-700	-600	-500	-400	-300	-200	-100	0	100	200	300	400	500	600	700	800
-400	-56	71	42	52	38	50	67	51	50	16	6	1	4	0	0	0	0
-360	0	0	2	0	3	16	7	21	35	24	19	4	4	2	0	1	1
-320	0	2	2	3	11	50	78	70	106	89	66	28	14	4	3	1	0
-280	0	3	2	8	32	134	187	260	370	381	220	119	70	4	2	4	0
-240	1	2	21	75	139	520	786	914	1240	1502	2330	1242	314	36	65	38	3
-200	8	4	52	160	682	2088	3862	3720	3953	3459	4661	2872	758	403	108	20	1
-160	3	5	13	160	935	2258	4167	3322	2468	3086	2384	2368	963	481	83	12	2
-120	0	1	8	185	930	2142	3707	2748	1262	2042	2389	1084	1380	300	14	4	1
-80	2	2	5	1	106	1604	2607	1271	638	969	1455	1294	536	67	1	0	0
-40	9	- 5	11	16	36	335	1595	1317	995	929	1209	974	282	3	2	6	2
0	5	0	7	14	171	1438	1570	1384	1068	1499	1130	712	39	6	2	2	1
40	10	5	10	22	60	368	929	1264	1063	1395	2171	721	123	18	1	6	- 6
80	3	0	10	133	177 1	1994	2694	2311		2081	3424	930	404	47	16	2	- 7
120	4	5	10	367	1399	2250	2914	3608	2920	3367	3840	2417	1201	528	16	8	3
160	3	6	202	799	1889	2385	3468	2986	3434	4214	3772	2561	1132	278	48	4	4
200	0	13	193	475	769	2268	3854	2341	2272	1975	2023	1257	335	186	94	20	10
240	11	14	167	194	850	3425	1550	1641	1935	1860	1581	902	975	233	164	139	76
280	79	93	172	213	210	288	400	428	509	388	497	242	184	151	80	78	52
320	44	93	90	81	385	113	128	105	83	80	113	49	64	49	41	38	60
360	37	36	30	48	26	17	55	32	33	36	44	35	63	37	36	52	75
400	42	37	54	60	52	27	23	8	27	22	7	17	5	- 7	- 7	11	13

	1	101	201	301	401	501	601	701	801	901	1001	1101	1201	1301	1401	1501	plus
aucune	à	à	à	à	à	à	à	à	à	à	à	à	à	à	à	à	de
	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1600

5.3.6. Représentation graphique des nombres et volumes cumulés

Diamètre des particules (µm)

Effet de la pression sur une buse à fente 110 03 à 1, 3 et 5 bar

Pression (bar)	1	3	5
Nombre de particules mesurées	299 295	437 818	700 671
Diamètre arithmétique (μm)	149	96	66
Diamètre Volumétrique (μm)	216	140	102
Diamètre de Sauter (μm)	295	192	146
Coefficient d'homogénéité	77,4%	77,1%	74,9%
NMD (µm)	124	81	50
D10 (µm)	187	122	94
D50 (VMD) (μm)	349	219	170
D90 (μm)	518	352	264
Span relatif	2,02	2,16	2,10
VMD/NMD	2,81	2,70	3,39

Avantages:

Données spatialisées Chaque goutte est analysée individuellement Données disponibles en nombres et en volume

Inconvénients:

Manips longues (2 h/modalité)
Volume de bouillie ~ 80 L et effluents
Seules les gouttes sphériques sont comptabilisées et le taux de rejet n'est pas facilement accessible

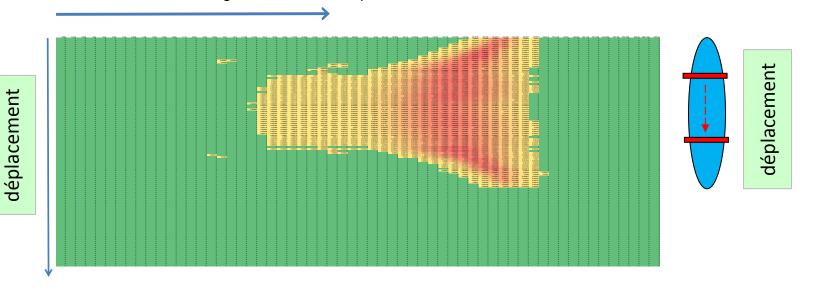
11

Cas n°2 : Malvern Spraytec

Mesure intégrative dans le spray.

Il est composé d'un émetteur laser de faible puissance 5mW HeNe qui traverse le spray (3). Fonctionnant grâce au principe de diffraction de la lumière à la surface des gouttes, le faisceau est diffracté sur une trentaine de récepteurs (5). Selon la taille et le nombre de gouttes, l'atténuation du signal est variable (estimation d'un volume global par le coefficient volumique Cv) et l'intensité aux différents angles permet d'apprécier la répartition en classes de taille de gouttes.

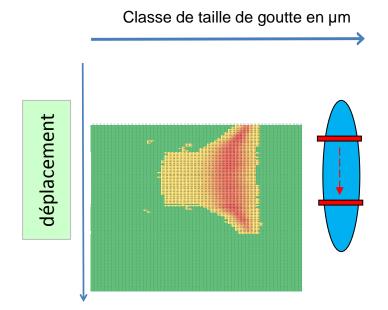
1 mesure réalisée durant 100 ms, toutes les secondes. Vitesse de balayage de la buse (réglable) de 10 à 20 mm.s⁻¹

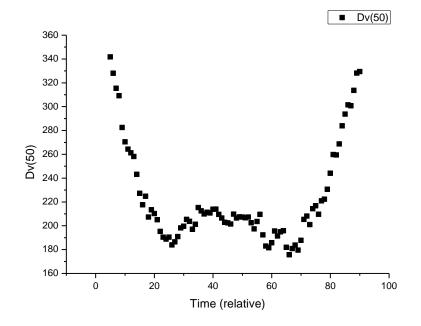


Expression des résultats Malvern :

Évolution de la granulométrie au cours du balayage

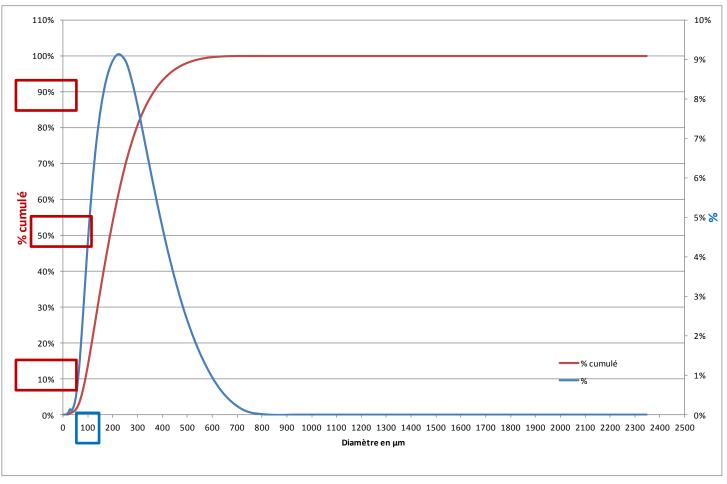
Classe de taille de goutte de 1 à 2500 µm


Chaque ligne correspond à 1 mesure acquise toutes les secondes Pour chaque mesure on a la répartition dans chaque classe de taille de goutte



Expression des résultats Malvern :

Évolution de la granulométrie au cours du balayage



Ex. profil d'évolution du Dv50 (VMD) selon l'axe du spray

Expression des résultats : synthèse globale du spray

Données en volume : Dv10, Dv50, Dv90 et %V< 100 µm

Avantages:

Manips courtes (2 min par modalité + temps de préparation) Adapté lorsque le nombre de modalités est important Volume de bouillie (3 à 5 L selon le débit de la buse)

Inconvénients:

Pas de comptage de gouttes Cartographie 1 D uniquement

Récapitulatif des méthodes

	Dantec	Malvern
Modalités	< 10	Non limité
Volume bouillie	80 L min	3 L min
Durée essai /modalité	2 h	1 min.
Cout		
Disponibilité	Faible	Oui