

PCB transfer from sediment to bioto: design and implementation of models in a management

M. Desmet, G. Roux - LAPPELSE C. Miège, A. Roy, C. Lopes, B. Motte - Cemagref H. Persat – UMR 5023 CNRS - UCBL – LEHNA

P. Bonté, I. Lefèvre – CNRS-CEA LSCE, Git sur Yvet B. Mahler, P. Van Metre - USGS, Austin

<mark>e s</mark>oec<mark>i</mark> k

ZONE ATELIER BASSIN DU RHONE RHONE BASIN LONG TERM ENVIRONMENTAL RESEARCH

Context, study objectives

- Since 2005, fish consumption partially prohibited along the Rhône River
- Questions raised by authorities and stakeholders about
 - The duration of the problem
 - Its origins, either historical sediment contamination or active releases from electric equipments or so
 - Assuming sediments being a major source/vector, which [ΣPCB] could be deemed acceptable according to the regulatory threshold (fish consumption)?
- Understand the transfer processes from sediment to biota (fish):
 - Exposure pathways and influencing factors
 - Description (numerical model) of PCB transfer in trophic networks
 - Determine a range of PCB sediment concentrations allowing fish consumption
- Characterize spatial-temporal trends

Spatial – temporal gradient in sediments

¹ Desmet M. & al. (acc.). *PCB historical trends as recorded by Rhone river sediments,* Sci. Total Environ.

Model design and implementation

- Experimental design
 - Fish sampling and analysis
 - Biometry (size, weight, sex, age, lipids)
 - Stomach contents, $\delta 13C$ et $\delta 15N$
 - Indicator PCBs (PCBi)
 - Invertebrate sampling and analysis (PCB (DL, i), δ 13C and δ 15N ...)
- Statistical model
- Physiology-based bioaccumulation model

Squalius cephalus

Barbus barbus

Fish exposure routes

- Possible pathways
 - Respiratory (deemed minor)
 - Trophic
- Information on diet
 - Stomach contents: snapshot
 - Stable isotopes: mean diet and tropic position
- Relationship between PCB contamination and C source

GDL site

Stable isotope mixing models

- Each baseline, either Pisidium or Corbicula, represents a carbon source:
 - Pisidium: autochtonous / pelagic
 - Corbicula: detrital / sediment
- Fish species level: type of habitat foraged
- Individual level: within species variability in habitat foraging behaviour

Statistical model

- Backward stepwise regression – log linear model
- Dependant variable:
 ΣPCBi in fish
- Explanatory variables: size (L), weight, age, TP, % detrital C in the diet (% detr-C), % lipid, sex, max. ΣPCBi concentration in sediment (C_{SED-max})
- 78% of the total variability explained by L, % detr-C, C_{SED-max}

² Lopes C, Perga ME, Peretti A, Roger M-C, Persat H, Babut M (2011). *Chemosphere*, **85**: 502-508

From fish consumption to sediment quality

- Use of the statistical model for estimating a ΣPCBi level in sediment allowing fish consumption
- Performed for each fish of the dataset
 - Distribution of ΣPCBi (for 3 fish species and 3 sites altogether
 - Median at 31.8 ng.g⁻¹ (dw);
 - 90th centile at **5.9 ng.g⁻¹** (dw)

Numerical bioaccumulation model

- Goal: to describe fish contamination kinetics
 - Firstly by 1 PCB congener (PCB 153)
 - 3 fish species 3 experimental sites
- Approach: mathematical description of fish exposure (respiration, diet) and elimination (growth dilution, excretion ...) pathways through time:
 - Daily steps for 10-15 years
 - Comparison to the experimental data

Model(s) construction

- Kinetic bioaccumulation model derived from previous works (Connoly 1991, Thomann et al. 1992, etc.)
- Daily water temperature available at 1 site ⇒ U, H, F
- Weight and size fit to our experimental data ⇒ U, H, F, E, G
- Diet preferences from our data (stomach contents)
- R and M neglected for PCB 153

- PCB concentration in water: estimation from a local study, deemed constant
- PCB concentrations in sediments: data from cores
- PCB concentrations in preys: kinetic (steady state) model

$$C_{j,c}(t) = k_{u_{j,c}}(t)C_{w}(t) + k_{s_{j,c}}(t)C_{s}(t)$$

 k_{u} : water filtration rate k_{s} : sediment filtration rate

³ Lopes C, Persat H, Babut M (in press) *Ecotoxicology and Envvironmental Safety*

Results: predictions vs observations

MTE (upstream site)

Sensitivity analysis

- Main influence of
 - Variables related to diet
 - Sediment concentrations
 - Excretion rate
 - K_{ow}
- Almost no influence of gill uptake, concentration in water ...

Sediment concentrations allowing fish consumption

- Based on the model and the relationships between PCB153 and ΣPCBi
- Assumptions
 - No exceedence during the lifetime
 - Exceedence allowed for X% of time (e.g. 20%)
- Outputs depend of the site and the species
- Is it acceptable to allow exceedence time-slots ... ?

	Barbel	Bream	Chub
MTE	1	1	2
GDL	0.7	0.5	1
BRE	0.7	1.5	1.2
MTE-20	2.3	1.7	3.3
GDL-20	1.7	1	2
BRE-20	2	3	3

Conclusions

- Successful approach combining field data (high resolution sediment cores, isotopes, contamination) and modelisation
- Critical role of sediment in PCB food-web contamination
- Statistical (log-linear) model efficient,
 - Needs further validation with independent datasets
 - Based on isotope data and SIAR modelling
- Bioaccumulation model nicely predictive,
 - Needs improvements: variations of fish diet with fish age, invertebrate contamination kinetics, excretion ...
 - Needs further tests on other sites / species
 - Heavy to implement

After-sales services

- Study website: <u>https://tsip-pcb.cemagref.fr/</u> (mostly in French)
- Experimental data:
 - fish contamination data recorded in the Rhone-Mediterranee basin database (<u>http://www.rhone-mediterranee.eaufrance.fr/usages-et-pressions/pollution_PCB/basepcb/index.php</u>)
 - Sediment contamination data recorded by the Rhone Sediment Observatory (<u>http://www.graie.org/osr/spip.php?rubrique39</u>)
- Publications
 - Desmet M, Mourier B, Mahler B, van Metre P, Roux G, Persat H, Lefèvre I, Peretti A, Chapron E, Simonneau A, Miège C, Babut M (accepted) PCB historical trends as recorded by Rhone river sediments. Sci. Total Environ.
 - Lopes C, Perga ME, Peretti A, Roger M-C, Persat H, Babut M (2011) Is PCBs concentration variability between and within freshwater fish species explained by their contamination pathways? *Chemosphere* **85** (3):502-508
 - Lopes C, Persat H, Babut M (in press) Transfer of PCBs from bottom sediment to freshwater river fish species: a food-web modelling approach in the Rhône River (France) in support of sediment management. Ecotoxicology and Environmental Safety. doi:10.1016/j.ecoenv.2012.04.007