Acoustic measurements on the Hole Erosion Test

2019 EMI International Conference

Charline Jeanniot - Irstea

Stéphane Bonelli (Irstea), Pierre-Olivier Mattei (LMA), Fabien Anselmet (Irphe), Naïm Chaouch (Irstea)

Wednesday 3rd July 2019

Context

→ In France : 1 dike break/year ~ 100 M€

→ In the world : 46 % of dike break is caused by internal erosion

- Context of thesis research and experimentations
- | Experimental results
- III Next steps and perspectives

→ Is acoustic detection an effective method for dyke monitoring?

Marine submersion protection dike research platform

- Quantifying the actions of the sea on a dike and its durability (soil-lime dike),
- Asses the perception of the risk of marine submersion and protective measures,
- Interdisciplinary approach: natural sciences, engineering, history and psychology.

Camargue Dike © Irstea

Objectives

I – Hydro-acoustic modelling of internal flows with application to dikes and levees – Thesis

- Study the potential of acoustic detection,
- Develop new theoretical models and numerical tools for the emission and propagation of acoustic waves.

Subject

- → Acquire and interpret the acoustic signals characteristic of internal flows and the erosion phenomenon via :
 - Lab experimentations (Hole Erosion Test bench),
 - In situ tests.
- → Model and simulate internal flows studied and compare theoretical and experimental acoustic responses using COMSOL Multiphysics, MATLAB and Mathematica softwares.

I – Acquisition of acoustic signals characteristic of internal flows – Hole Erosion Test bench

Soil-lime test tube	D1=6mm	D2=10mm
Accelero-	Measure	Measure
meters	1	2
Optical	Measure	Measure
Fiber	1	2

Acoustic measurements with accelerometers and optical fiber.

Acoustic measure device – Hole Erosion Test

Test bench Hole Erosion Test © Irstea

→ several levels of flow

Longitudinal layout

Transversal layout

System response to an internal turbulent excitation

System equation : harmonic state

$$[\Delta - K^2] p(n) = F(n) \qquad n \in \Omega_p$$

- **Boundary conditions**
 - Neumann condition (housing)
 - Dirichlet condition

$\partial_n p(n) = 0$	$x=0,L_p$	$\forall r, \theta \in [0, R_p], [0, 2\Pi]$
p(n) = 0	$r = R_p$	$\forall x, \theta \in [0, L_p], [0, 2\Pi]$

Green's representation

→ a representation of a pressure field which describes the direct fields and those diffracted by the boundaries.

Vibration modes

$$f_n = \frac{nc_0}{2L_p}$$

- f₁ = 2500 Hz
 f₂ = 5000 Hz
 Theory vs experimentations ??

n : mode number $-c_0$: acoustic wave celerity (1500m/s) $-L_0$: test tube length (30cm)

- Acoustic measurements with accelerometers

Resonance peaks ~ 2340 Hz and 5470 Hz

- **II** Acquisition of acoustic signals characteristic of internal flows
- Acoustic measurements with accelerometers

Fourier Transform

Frequency filter

Lorentzienne identification

Trends (Flow rate, Velocity, **Reynolds Number)**

Reynolds Number

- Resonance frequencies
- Trends independent of the diameter
- Bernoulli's law

$$p + \frac{1}{2}\rho v^2 = cst$$

each point

- New measurements on the same test bench with more soil test tubes (D₁, D₂, D₃, D₄)
 and more flow rates.
 - → Refine previous trends
- Insert and characterize acoustically the internal erosion

Perspective

Develop acoustic measurements by optical fiber (Digue2020)

III - Internal flow tests in situ - Digue2020

Acoustic measurements by optical fiber, in collaboration with Cementys (SMB).

- Two internal pipes will be realized and instrumented during the construction of the research platform.
- Internal flow tests consist of studying acoustic emissions characteristic of an internal flow in a dike type hydraulic structure.

→ Results confrontation

- Acoustics measurements with accelerometers

Evolution of the amplitude of resonance peaks as a function of Reynolds Number

Reynolds Number

Charline Jeanniot

- Acoustics measurements with accelerometers

Rate flow

Charline Jeanniot

- Acoustics measurements with accelerometers

Velocity

Charline Jeanniot